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<Paper>

Approximate Equation for Energy Barrier in Magnetic Recording

T. Kobayashi and I. Tagawa*
Graduate School of Engineering, Mie Univ., 1577 Kurimamachiya-cho, Tsu 514-8507, Japan
“Electrical and Electronic Engineering, Tohoku Institute of Technology, 35-1 Yagivama-Kasumicho, Sendai 982-8577, Japan

We derive an approximate energy barrier equation considering its adaptation to our model calculation employing
the Néel-Arrhenius model with the Stoner-Wohlfarth grain or dot in magnetic recording. First, we calculate the energy
barrier as a function of magnetic field by employing a numerical calculation for an angle of 0 to 180 deg between an
easy axis and the magnetic field. This relation is represented by an approximate equation for an angle of 0 to 90 deg,
taking account of Pfeiffer’s approximation for an angle of 90 to 180 deg. Next, the shape anisotropy energy for a cuboid
or cylinder is also represented by an approximate equation, since the energy barrier is a function of the shape

anisotropy energy.

Key words: energy extremum, energy barrier, demagnetizing factor, shape anisotropy energy

1. Introduction

The challenges facing the design of magnetic recording
(MR) media are
(1) information stability during 10 years of archiving,
known as the K,V/(kT) problem?,
(2) information stability in an adjacent track during
writing, known as the adjacent track interference (ATI)
problem, and
(3) the writing field dependence of the bit error rate,
namely writability.
These three subjects, which are in a trade-off
relationship, must be dealt with simultaneously.
Micromagnetic calculation is useful for examining (2) in
shingled MR (SMR) and (3). However, this is not
practical due to the long calculation time required for
subjects (1) and (2) in conventional MR (CMR) because
of the 103-104 times rewrite in the adjacent track. We
have proposed a model calculation employing the Néel-
Arrhenius model with the Stoner-Wohlfarth grain or dot.
This model is applicable to all three subjects? including
SMR and CMR. In our model calculation, the energy
barrier is important. We have dealt with the writing field
perpendicular to the medium plane. However, to
examine the effect of oblique writing fields on ATI
problem, the value of the energy barrier is necessary for
angles of 90 to 180 deg between the easy axis and the
magnetic field. Many approximations for the energy
barrier have been proposed3® for angles of 90 to 180 deg.
Furthermore, to examine the effect of oblique writing
fields on writability, the energy barrier for an angle of 0
to 90 deg is also necessary in our model calculation, since
we need the probability for each attempt where the
magnetization and writing field change from parallel to
antiparallel”?. Many design parameters are related to
each other in a complex manner for heat-assisted
magnetic recording (HAMR), since HAMR is a recording

Corresponding author: T. Kobayashi (e-mail: kobayasi
@phen.mie-u.ac.jp).

technique in which the medium is heated to reduce
coercivity during the writing period. A feature of our
model calculation is that it is easy to grasp the physical
implication of writing process in HAMR and the
calculation time is short. As far as we know, this
approximate equation has not been obtained.

In this paper, we calculate the energy barrier as a
function of magnetic field by employing a numerical
calculation for angles of 0 to 180 deg, and propose an
approximate energy barrier equation for angles of 0 to 90
deg considering its adaptation to our model calculation,
taking account of Pfeiffer’s approximation® for angles of
90 to 180 deg. We also mention an approximate equation
for shape anisotropy energy, since the energy barrier is
also a function of the shape anisotropy energy. For
granular media with grains of various shapes, it takes a
long time to calculate numerically the shape anisotropy
energy of each grain. If the approximate equation is
applied, a significant reduction in calculation time can
be expected.

2. Calculation Method and Results

2.1 Energy extremum
We define an angle 6 between an easy axis and a
magnetization vector M (magnitude M), and ¢

y

Fig. 1 Definition of angles of magnetization M and
external magnetic field H vectors.
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Fig. 2 Normalized energy E/(K,V) as a function of magnetization angle 6 for various normalized fields H/H, where

¢ is the field angle. (a) ¢ = 0, (b) 45, (c) 90, (d) 135, and (e) 180 deg.

between an easy axis and an external magnetic-field
vector H (magnitude H) as shown in Fig. 1. The
summation E = E; +E, of Zeeman energy E; =-M -
HV and anisotropy energy E, = K,Vsin?8 is given by

E=-M-HV +K,Vsin?@
= —M HVcos(8 — ¢) + K,Vsin?0, (1
where K, and V are the anisotropy constant and grain

or dot volume, respectively. The E/(K,V) value is used
below instead of E as

E H e
KV -2 e Cos(e - q,‘)) + sin“6, 2
where Hy is an anisotropy field defined by 2 K,/M;.
Figure 2 shows the normalized energy E/(K,V) as a
function of 6 for various normalized fields H/H,. When
(a) ¢ = 0deg, there are two local minima and two local
maxima between 0 <6 <360deg for 0 <H/H,<1.0,
and two 6 values of 0 and 180 deg at which the
magnetization is stable. For H/H, = 1.0, the number of
local minima decreases to one at 6 = 0deg, and the
magnetization switches from 6 = 180 to 0 deg. When (b)
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Fig. 3 Normalized switching field Hg,,/H, as a function

of field angle ¢34,

180

¢ = 45 deg, there are also two local minima and two local
maxima between 0 <6 <360deg for 0 < H/H, <0.5,
and the number of local minima decreases to one, and
magnetization switching occurs at H/Hy = 0.5. The
switching field Hg, is a function of ¢, which is well
known34 as

Hsw 1
Hi  (Ising|?/3+|cos¢|?/3)3/2

3

This relation is shown in Fig. 3, for example Hg,,/Hy =
1.0 at ¢ = 0deg, and Hg,,/Hy = 0.50 at ¢ =45 deg.

2.2 Energy barrier

When there are two local minima E, and one local
maximum E; between 0 <6 <180deg, the energy
barrier is given by the difference between E; and E,
with a smaller 6 value. It is well known that the
(E, — Ep)/(K,V) values for ¢ = 0, 90, and 180 deg can
be calculated analytically as

E{—E H\?

M=(1+—) ,and (4)
KyV Hy

(¢ =0deg)

E{—E H\?

Bk _(,_ny o
KuV Hy

(¢ =90 and 180 deg)

We can obtain the E; —E, values for all 0 <¢ <
180 deg values by employing a numerical calculation as
shown by open circles in Fig. 4. For H/H\ > Hy,,/Hy,
there exists no E; — E,, since there is one local minimum
E, between 0 < 6 < 180 deg.

If this relation can be represented by an approximate
equation, it will be convenient for various analyses,
especially for our model calculation”?, since the
numerical calculation becomes unnecessary and the
calculation time is shortened. When 90 < ¢ < 180 deg, it
has been reported by Pfeiffer? as

El_EO _ (1 H/Hk
KyV st/Hk
(0 < H/Hy < Hsw/Hy)

X
) , where
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Fig. 4 Normalized energy barrier (E; —E,)/(K,V)
obtained by employing numerical and approximate
calculations as a function of normalized field H/H, for
(a) 0 <¢ <90deg and (b) 90 < ¢ < 180 deg?.

x = 0.86 + 1.14(Hg,, /Hy). (6)

The result calculated using Eq. (6) is shown by solid lines

in Fig. 4 (b). A comparison reveals fairly good agreement

between the numerical and approximate calculations.
We referred to Eq. (6) for 0 < ¢ <90 deg as

E1—Eg ( H/Hg )x
——L =1+ 7)) . 7
— @) ™
Taking account of f(¢p) =+1 for ¢ = 0deg, f(¢p) =—1
for ¢ =90deg, and that the E; —E, value is almost
independent of H/H, for ¢ = 60 deg as shown in Fig. 4
(a), we adopted the following equation as f(¢).

f(¢) =2 (cosp —3). ®)

Next, in the following equation, we searched for the a
value that fitted the numerical calculation and obtained
a=2.0.

Fizhy _ (1 +2 (cosd) - 1) ﬂ) , where
KuV 2/ Hgw/Hg
x = (2 —a) + a(Hgyw/Hy). )

As a result, we derived the following approximate

Journal of the Magnetics Society of Japan Vol.47, No.5, 2023

INDEX



equation for 0 < ¢ < 90 deg.

B1Fo = (1 +2 (cosd) - l)

KyVv 2
(0 < H/Hk < st/Hk)

x = 2.0(Hgy/H).

H/Hy
Hsw/Hyg

X
) , where

10

Equation (10) agrees with Eq. (4), since f(¢p)H/Hgy =
+H/H, and x =2 for ¢ =0deg, and agrees with Eq.
(5), since f(¢p)H/Hg, =—H/H, and x=2 for ¢ =
90 deg. The calculated result obtained using Eq. (10) is
shown by solid lines in Fig. 4 (a). The relative error is
between +15 to —10%. Therefore, Eqs. (6) and (10)
have a sufficiently good accuracy for application to model
calculations.

If we need to take the magneto-static and exchange-
coupling energies from the surrounding grains or dots
into account, they are incorporated into H as vectors,
since they have the same interaction energy as E;.

2.3 Shape anisotropy energy

The energy barrier is a function of the shape
anisotropy energy. The approximate equation for a
demagnetizing factor will also be convenient. A
demagnetizing factor has been calculated for oblate and
prolate spheroids®.

We assumed a grain or a dot to be a cuboid with a size
D, for the down-track direction, D, for the cross-track
direction, and height h where the volume V is D, X
D, x h. The demagnetizing field Hyq at the center of the
grain or dot for 8 = 0 deg is calculated with

DDy
h|DE+D3+1?

where N, is the demagnetizing factor along the z axis.
The shape anisotropy constant Kgy,,e is approximately
expressed? by

Hy = 8Marctan = M;N,, (11)

2

Konape = LZ—302Ms, (12)
If h&DyandD,, N, and Kg,p. become 4rm and
—2mMZ, respectively. When cubic D, =D, = h, N, and
Kshape become 4m/3 and O, respectively.

Similarly, if a cylinder, whose diameter and height are
D and h, respectively, is assumed, the Hy value at the
center is calculated by

h

If h « D, N, becomes 4.

The N,/(4m) and Kgpape/ (2mM2) values as a function
of height h/(diameter or width D) are shown in Fig. 5 (a)
and (b), respectively. The results for cuboid and cylinder
approximations are fairly similar to the experimental
result for a rod® and to the calculation results for oblate
(0.1 <h/D < 1) and prolate (1 < h/D < 10) spheroids®.

Hy = 4nM|1— = M;N,. (13)
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Fig 5 (a) Demagnetizing factor N,/(4m) and (b) shape
anisotropy constant Kghape/(27MZ) as a function of
height h/(diameter or width D). The N,/(4m) values for a
rod (experimental) and spheroids are previously
reported values®.

For the spheroid model, the equation for N, must be
changed according to the h/D value. The cuboid and
cylinder models are simple and it is easy to grasp the
physical implication. Although Egs. (11) and (13) are
approximations at the particle center, they are sufficient
for application to model calculations.

Since the shape anisotropy energy Egsnape has the
same self-energy as E, E, and Eg,,e can be
considered together.

E, + Eghape = K, Vsin?0 + KgyapeVsin?6

- (Ku + (e=3N)Ms : ) VsinZ6, (14)
If we put

Kyetr = Ky + w, and (15)

Hyetr = %u:ff, (16)

the following equation can be obtained instead of Eq. (2).

E H
-2 cos(6 — ¢) +sin’6.  (17)

KueftV Hyeff
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When Kghape is considered, K, and Hy can be regarded
as Kyere and Hyegr, respectively.

4. Conclusions

We proposed an approximate equation for the energy
barrier for angles of 0 to 90 deg between the easy axis
and the magnetic field, taking account of Pfeiffer’s
approximation for angles of 90 to 180 deg. The relative
error is between +15 to —10% . The equation we
derived has a sufficiently good accuracy for application
to model calculations. We also derived approximate
equations for the shape anisotropy energy of cuboids or
cylinders, since the energy barrier is a function of the
shape anisotropy energy. Although it is an approximate
equation at the particle center, it is sufficiently effective
for application to model calculations.

The adoption of this approximation for angles of 0 to
180 deg to our model calculation is a subject for future
study.
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Rectification effect of non-centrosymmetric Nb/V/Ta superconductor
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The superconducting diode effect in which electrical resistance is zero in only one direction has recently been

reported in superconductors without inversion symmetry. Previous studies investigated the nonreciprocity of the
critical current, but little has been known about the rectification effect when AC currents are applied. Herein, we

examined the rectification characteristics of a non-centrosymmetric Nb/V/Ta artificial superlattice under AC
currents. The rectification strength can be modulated by an applied magnetic field, and its polarity can be tuned by

the magnetic field. Furthermore, we find that the magnetic field dependence of the rectification is different from that

of the nonreciprocal critical current.

Key words: superconducting diode, rectification, artificial superlattice, inversion symmetry breaking

1. Introduction

Rectification, the conversion of a bidirectional current
into a unidirectional current, is an essential process in
modern electronics. The electronic devices that enable
rectification are called diodes and are widely used to
convert alternating current (AC) to direct current (DC),
protect electrical circuits from overvoltage, and detect
electromagnetic  radiation. = Conventional diodes,
composed of different types of semiconductors connected
to form a p-n junction, exhibit a low resistance in one
direction and a high resistance in the other direction.
Although the diode effect forms the basis for numerous
electronic components, energy loss is inevitable in the
semiconductor diodes due to their finite resistance.
Therefore, superconducting diodes with zero electrical
resistance in one direction hold great promise for
practical use. Wakatsuki et al. demonstrated that the
nonreciprocal resistance in a low-symmetry 2D material
increases by orders of magnitude in the fluctuating
regime of superconductivity as compared to the normal
conduction state.” In addition, a rectification effect has
been detected in superconducting thin films designed to
control the that pierce the
superconductor.2"1® However, such superconducting
diode effect can only manifest itself when the
superconductors have a non-zero resistance.

We fabricated an artificial superlattice consisting of

magnetic fluxes

Corresponding author:
T. Ono (e-mail: ono@scl.kyoto-u.ac.jp).

stacked alternating layers of Nb, V, and Ta, and
demonstrated an ideal superconducting diode that has
zero resistance in only one direction.1V1? Stimulated by
our experiment, theoretical groups proposed an intrinsic
mechanism to cause the superconducting diode
effect.1149 They suggested that the Cooper pair of a
superconductor without inversion symmetry acquires a
finite momentum under an in-plane magnetic field, and
that the depairing current, the upper limit of the critical
current, is non-equivalent in the directions parallel and
anti-parallel to its momentum. Subsequently, several
experimental results on the superconducting diode
effect using materials without inversion symmetry have
been reported.!®18 In the study of the superconducting
diode effect exhibited by
superconductors, the nonreciprocity of the critical
current has been investigated so far, but for its
application, it 1is necessary to investigate the
rectification characteristics when an AC current is
applied. In this study, we examined the rectification
injected into a

non-centrosymmetric

effect when an AC current was
non-centrosymmetric Nb/V/Ta artificial superlattice.

2. Experimental Results
2.1 Nonreciprocal Critical Current

We used the same [Nb(1.0 nm)/V(1.0 nm)/Ta(1.0
nm)lso superlattice used in Ref. 19. Figure 1(a) shows a
photograph of the device and a schematic diagram of the
experimental setup. The transport measurement was
performed in a four-terminal configuration by using a
nanovoltmeter (Keithley2182A) and a current source
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Temperatures in (a)-(d) are all 2 K.

(Yokogawa7651). The temperature and magnetic field
were controlled using a commercial refrigerator
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(Quantum Design, Physical Property Measurement
System). The superconducting transition temperature
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was 3.3 K under a zero magnetic field. We measured the
critical current by increasing the current under a
constant in-plane magnetic field orthogonal to the
current direction. Figure 1(b) shows the magnetic field
dependence of the critical current. The critical current
were different whether the applied currents were
positive or negative. Here, the nonreciprocal critical
current AL, is defined as the difference between the
critical current in the positive direction (Z+) and that in
the negative direction (Z-). Figure 1(c) presents the
magnetic field dependence of the nonreciprocal critical
current. In the positive field region, the sign of the
nonreciprocal critical current was negative below 0.275
T, positive between 0.275 and 0.375 T, and negative
again above 0.375 T. This oscillating behavior of the
nonreciprocal critical current is consistent with our
previous report2?,

2.2 Rectification Effect

To probe the rectification effect, we investigated the
magnetic field dependence of the rectification voltage
under a sinusoidal AC current of 100 kHz. We injected
AC currents into the device with an AC current source
(Keithley 6221 AC and DC current source), and
measured DC voltages with a nanovoltmeter (Keithley
2182A) and AC voltages with a multimeter (Keithley
2000). Figure 2(a) shows the change in DC voltage (blue
dots) and AC voltage (red dots) as the AC current
amplitude was increased under an in-plane magnetic
field of 0.1 T. The rectification voltage appeared in close
vicinity to the superconductor-to-metal transition.
Figures 2(b) and 2(c) show the rectification voltage
when magnetic fields of 0.375 T and 0.6 T were applied,
respectively. We observed negative rectification voltage
at 0.1 T, both positive and negative rectification voltage
at 0.375 T, and positive voltage at 0.6 T. Furthermore,
dip structures were observed in Fig. 2(a) and Fig. 2(b).
Although the origin of the dip structures was not clear
at this stage, one possibility can be the vortex ratchet

motion reported in Ref. 2. To investigate the
2 L
! h Amplitude
9 11 -—=- 9.0mA
E | N\ --- 80mA
3 0 ~ 24 7.0 mA
= ! 6.0 mA
=17 | 5.0 mA
* -—- 40mA
72 L . ) ) ) ) 4
-1.0 —0.5 0.0 0.5 1.0
poH (T)

Fig. 3 Magnetic field dependence of rectification
voltage when AC current amplitude was
constant at 2 K.
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rectification effect in detail, we plotted the rectification
voltage as a function of magnetic field and AC current
amplitude in Fig. 2(d). Comparing Fig. 2(d) with Fig.
1(c), between 0 and 0.275 T, the sign of the rectification
voltage was the same as that of the nonreciprocal
critical current. At 0.325 T, where the sign of the
nonreciprocal critical current was reversed to be
positive, both positive and negative rectification
voltages were observed. As the magnetic field was
further increased to 0.6 T, where the sign of the
nonreciprocal critical current was reversed again, the
polarity of the rectification voltage was opposite to that
of the nonreciprocal critical current. The inconsistency
between the signs of the superconducting diode effect
and the rectification voltage observed here could be due
to the additional contributions of the dynamics of vortex
or non-equilibrium quasiparticles driven by AC current.
To elucidate the mechanism, it is necessary to further
investigate the frequency dependence of the rectification
effect.2123)

In Fig. 2(d), we examined the rectification voltage
when an AC current amplitude was increased under a
constant magnetic field. To check the reproducibility, we
also investigated the rectification voltage when a
magnetic field was increased under a constant AC
current amplitude. Figure 3 shows the magnetic field
dependence of the rectification voltage when an AC
current amplitude was increased from 4 to 9 mA. The
polarity of the rectification was reversed as the AC
current amplitude was increased, which was consistent
with the experimental result of Fig. 2. We have
reconfirmed the polarity reversal of the rectification
effect induced by the magnetic field.

3. Conclusion

We have demonstrated the rectification effect of the
Nb/V/Ta artificial superlattice superconductor. The
rectification effect obtained here is expected to be
observed in other non-centrosymmetric materials
exhibiting the superconducting diode effect.
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