SANS and µSR Studies on the New "B-Phase"

at Low Temperatures in MnSi

M. Pardo-Sainz^{2,1}, M. Ohkuma³, M. Mito³, K. Ohishi⁴, Y. Kousaka², K. M. Kojima⁵,

M.-V. de Toro Sanchez⁵, K. Inoue^{6,7}, V. Laliena⁸ J. Campo^{1,*}

¹Instituto de Nanociencia y Materiales de Aragón (CSIC-Universidad de Zaragoza), ²Osaka Metropolitan University, ³Kyushu Institute of Technology, ⁴Comprehensive Research Organization for Science and Society, ⁵TRIUMF, ⁶Hiroshima University, ⁷Chirality Research Center and Institute for Advanced Materials Research, ⁸Universidad de Zaragoza

Recently, we suggested theoretically that at low T, the conical (CH) and forced-ferromagnetic (FFM) phases in cubic helimagnets are not connected but are separated by another Skyrmion Lattice phase (SkL), which could be metastable, and a new phase of "unknown" nature just below the critical field Hc at low T [1]. The theoretical prediction of the new SkL phase at low T is in good agreement with the experiments reported in [2,3]. On the other hand, by using careful AC susceptibility at low temperature, we determined the magnetic phase diagrams of oriented enantiopure single crystals of MnSi [4] in which a new phase (*B-phase*) emerges, which could be consistent with the theoretical prediction for the new "unknown" low temperature phase.

In order to clarify the nature of this *B-phase* at low T near critical field, we performed Small Angle Neutron Scattering (SANS) measurements at TAIKAN in J-PARC and muon spin rotation (μ SR) measurements at M15 in TRIUMF. The magnetic field dependence of the SANS patterns at 2 K and both 0.3 T and 0.5 T show two

peaks along the horizontal axis for $\vec{H} \perp \vec{k_{l}}$ ($\vec{k_{l}}$ incoming neutron beam wave vector). These are the magnetic Bragg peaks of the conical state. On the other hand, no diffraction peaks were observed for $\vec{H} \parallel \vec{k_{l}}$, in which, for example, a six-fold-symmetric diffraction pattern is observed in typical SkL (*A-phase*). These results suggest that the CH phase which exists in *B-phase* is different from the *A-phase* near T_c . According to the μ SR results, the internal magnetic field distribution in *B-phase* is apparently different from that in CH at low fields and FFM phases, consistent with the SANS results.

Fig. 1. Magnetic phase diagram of MnSi for the magnetic field applied along <111>.

In the presentation, we will talk about the results of both SANS and μ SR in detail, and discuss a possible spin texture in the new *B-phase*.

References

- [1] V. Laliena and J. Campo, Phys. Rev. B 96, 134420 (2017).
- [2] H. Oike et al., Nat. Phys. 10, 62 (2016).
- [3] T. Nakajima et al., Phys. Rev. B 98, 014424 (2018).
- [4] M. Ohkuma et al., APL Mater. 10, 041104 (2022).