
41Journal of the Magnetics Society of Japan Vol.41, No.2, 2017

J. Magn. Soc. Jpn., 41, 41-45 (2017)
<Paper> 

 

Automatic component selection for noise reduction in magnetocardiograph 
based on independent component analysis 

 

M. Iwai, K. Kobayashi, M. Yoshizawa, Y. Uchikawa*, and F. M. Bui** 
Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan  

* Tokyo Denki University, Ishizaka Hatoyama, Hiki-gun, Saitama 350-0394, Japan 
** University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada 

 
Magnetocardiogram (MCG) measurement systems require noise reduction, because MCG signals are extremely 

small compared to environmental magnetic noise. We investigate the efficacy of a novel noise-reduction method, 
based on an independent component analysis (ICA). The proposed noise reduction method requires a component 
selection process to distinguish signal from noise. A major challenge in applying ICA-based noise reduction method is 
the selection of suitable parameters, which in practice is often performed manually with rather subjective parameter 
choices. To address this issue, we proposed a component selection method that can be performed quantitatively and 
automatically. The proposed method is based on the peak values of the autocorrelation function and helps distinguish 
the independent components of the MCG signals from the noise using an appropriate threshold. By using the 
proposed method, we obtain output signal-to-noise ratios (SNRs) of 33.98 dB, 19.17 dB, and 13.56 dB, corresponding 
to input SNRs for the simulated data at respectively 0 dB, -10 dB, and -20 dB, after noise reduction. The results show 
that the proposed method exhibits remarkable promise in extracting a noise-mitigated MCG signal for a wide range of 
SNRs. 
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1. Introduction 

 
In recent years, magnetocardiogram (MCG) has 

become increasingly relevant for clinical research, due to 
its potential to detect early stages of heart disease. 
However, it is difficult to assess heart activity precisely 
without some form of noise reduction, because MCG 
measurements are extremely small compared to 
environmental magnetic noise.  

A possible solution that can suppress the noise is the 
use of a digital signal processing (DSP) method. The 
finite impulse response (FIR) filter is a well-known 
method in reducing noise via DSP. However, FIR filters 
have various issues such as distorted waveforms, 
generation of phase differences, and reduced signal 
peaks.  

Hence, a noise reduction method using an 
independent component analysis (ICA) is considered. 
This method has the ability to distinguish between 
independent components, whether those are MCG 
signals or noise. Component selection is important for 
accuracy of noise reduction. There are two steps involved 
in selecting the independent components that represent 
MCG signals in an inverse process: 
1. Distinguish between independent components 

separated using the ICA, whether those are MCG 
signals or noise. 

2. Select the independent components that are 
determined to be MCG signal components. 

In many cases, these processes have been performed 
by individual subjective judgment from a waveform of 
independent components. Hence, the results of this 

process differ from person to person. The process cannot 
be performed automatically and quantitatively, because 
there are no appropriate parameters that can 
distinguish the independent components between MCG 
signals and noise using measurement data. In addition, 
the component selection process has not been discussed 
in detail up until now1)-6). 

Therefore, we propose a new component selection 
method that can be used to reduce noise automatically 
and quantitatively by using measurement data. We have 
considered the proposed method can distinguish 
between the independent components of MCG signals 
and noise. We compare the proposed method with other 
component selection methods such as subjective 
judgment from the waveforms of independent 
components and the highest noise reduction accuracy. 

 
2. Noise reduction method using the ICA 

 
2.1 Noise reduction procedure 

First, we explain the process of the noise reduction 
method using the ICA as follows7)-8): 
1. Apply principal component analysis (PCA) to 

measurement data for whitening. 
2. Perform dimensional contraction to the whitening 

data (principal components) for eliminating 
unnecessary information and amount of calculation. 

3. Apply the ICA to the whitening data for separating 
independent components as source signals (MCG 
signals, noise, or both). 

4. Distinguish the independent components between 
MCG signals and noise, and select the independent 
components that represent MCG signals. 
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5. Apply an inverse process to reconstruct 
measurement data using the selected independent 
components. This process uses inverse matrices 
calculated from each separating matrix produced 
during the ICA and PCA processes. 

After completing these processes, a noise-reduced 
MCG signal is obtained. Accuracy of the noise reduction 
depends largely on the selected components. Therefore, 
the focus should be on the component selection step so 
that the process can be performed automatically and 
quantitatively. 
 
2.2 Independent component analysis (ICA) 

The ICA is a method designed to separate 
measurement data into independent components, which 
represent the source signals. ICA is performed based on 
statistical independence, and the difference between 
various ICA algorithms lies in the method of obtaining 
statistical independence. Independent components are 
statistically independent from each other. The 
measurement data model can be expressed in the ICA 
algorithm as 

𝑿𝑿 = 𝑨𝑨𝑨𝑨 ⋯ (1) 
where matrix 𝐗𝐗 is the measurement data, matrix 𝐀𝐀 is 
the mixing matrix, and matrix 𝐒𝐒 contains the source 
signals. Using this model, we treated the noise as one of 
the source signals. In this flow, 𝐗𝐗 is replaced with a 
matrix that represents whitening and dimensional 
contraction through PCA. The separating data model 
can be expressed as 

�̂�𝐒 = 𝐖𝐖𝐗𝐗 ⋯ (2) 
where matrix �̂�𝐒 represents the independent components 
that are statistically independent from each other, and 
matrix 𝐖𝐖  is the separating matrix. Matrix 𝐖𝐖  is 
optimized so that �̂�𝐒 is statistically independent of each 
other. 
 
2.3 Proposed component selection method 

We propose a new component selection method that 
can perform automatic, quantitative selection. In our 
previous study1), we proposed a component selection 
method that takes the synchronization of correlation 
function peaks of independent components and an ECG 
signal. However, in this study, the proposed method does 
not require the ECG signal. Instead, the proposed 
method utilizes the autocorrelation function of the 
independent components after completing the ICA and 
the average of the peak values, as follows. 
1. Calculate the autocorrelation function of the 

independent components separated by ICA. The 
equation of the autocorrelation function is: 

R(t) = 1
N ∑ (ŝi − s̅̂) × (ŝi+t − s̅̂)

√(ŝi − s̅̂)2 × √(ŝi+t − s̅̂)2

N

i=0
⋯ (3) 

 (0 ≤ t ≤ T − 1) 
where �̂�𝐬i are the rows of matrix ŝ, which contains 
independent component data, s̅̂ is the average of ŝi, 

N is the sampling number (500 points = 1 s), T is the 
measurement time, and t is the shifted time. 

2. Detect peaks of the autocorrelation function. We 
maintain peaks that have the same timing as other 
independent components because independent 
components containing the MCG signals have the 
same timing. We eliminate peaks if the peak interval 
is below 0.5 s (2 Hz) because the peak interval of 
MCG signals is approximately 0.5–2 Hz. 

3. Calculate the averages of the chosen peaks (AP) of 
the independent components. 

After performing these processes, we set the threshold 
AP values and distinguish between the independent 
components representing MCG signals and those 
corresponding to noise using the threshold. 

 
3. Simulation method 

 
The simulation method had two objectives. First, to 

assess the difference in the AP values between the MCG 
signals and the noise components. The second was to 
compare the component selection performed by the 
proposed method with the highest accuracy of noise 
reduction (HANR) method and the method of subjective 
judgment from waveforms. We explain the method used 
to determine the HANR method in section 3.2. 
 
3.1 Simulation data 

The MCG data was measured using a 64-channel 
(8×8) SQUID magnetometer in a magnetically shielded 
room (MSR). To reduce the noise, the MCG data were 
averaged 150 times. The averaged data represent the 
ideal data. Fig. 1 shows the ideal data of the 51 channel 
(highest amplitude position). The noise data were also 
measured using the same SQUID magnetometer with 
applying environmental magnetic noise via a coil in the 
MSR. Fig. 2 shows the applied noise data that was 
measured outside the MSR using a fluxgate. The 
simulation data were mixed with the ideal data and the 
noise data with signal-to-noise ratios (SNRs) of 0 dB, -10 
dB, and -20 dB. The sampling frequency of the 
simulation data was 500 Hz, and the simulation data 
were 10 s (5000 data points). The equation of the SNR is 

SNR = 20 log10
As
An

 [dB] 
where As is the peak amplitude of the QRS-complex, 
which is the highest amplitude sensor position for the 
ideal data, An is the zero-to-peak amplitude of the noise 
data. The utilized data are shown in the following 
figures (Figs. 1 and 2). 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Ideal data of highest amplitude position 
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Fig. 2 Noise data that was measured outside the MSR 
 
3.2 Simulation process 

The simulation was performed using the same process 
as the noise reduction method using the ICA, which is 
explained in section 2. The specific simulation process is 
as follows: 
1. Apply the PCA to the simulation data (64 channels × 

5000 points) for whitening.  
2. Perform dimensional contraction on the whitening 

data. We selected eight components from higher 
contribution ratios. The eight components had 99.9% 
or more information amount at all simulation data. 

3. Apply the ICA to the whitening data (eight 
components selected in step 2) to separate the 
independent components. 

4. Distinguish the independent components, which 
represent the noise, from the independent 
components, which represent the MCG signals, using 
the proposed automated method; thereafter, select 
the independent components that represent MCG 
signals. 

5. Apply an inverse process to reconstruct the 
measurement data using the selected independent 
components. 

To evaluate the proposed method, we calculated the 
correlation coefficient between the ideal data and the 
reconstructed data. The reconstructed data are the 
results of the noise reduction using the proposed method, 
the selection pattern with the HANR method, and the 
experimental judgment from waveforms. The HANR 
method was determined from among all selection 
patterns in all the simulations. The selection pattern of 
the HANR method was the one that had the highest 
correlation coefficient between the ideal data and the 
reconstructed data. 

 
4. Simulation results 

 
4.1 Peak timing 

Fig. 3 shows an example of the independent 
components (left side) and the autocorrelation functions 
(right side). The figures in Fig. 3 show three 
characteristic components from eight independent 
components. The figure at the top is characteristic of the 
QRS-complex; the figure at the center is characteristic of 
a T-wave; the figure at the bottom is one of the noise 
components. There are differences between the 
stationary signals and the random signals at peak 
values and peak timings. In case of the stationary 
signals, peaks are clearly defined because the 

autocorrelation function gives high values only when 
they correspond to peak timings. However, in case of the 
random signals, peaks are not clearly defined because 
the autocorrelation function exhibits high values 
randomly. 

Fig. 4 shows the peaks of the autocorrelation function. 
These figures are same as the ones on the right side of 
Fig. 3. The upper two signals have the same peak 
timings, while the lower signal exhibits random peak 
timings. Hence, we can determine the peak timings that 
represent the MCG signals. 
 
4.2 AP values 

Figs. 5-7 show the AP values of the independent 
components of the simulation data with SNRs of 0 dB, 
-10 dB, and -20 dB, respectively. The gray bars indicate 
the noise components, and the black bars indicate the 
MCG signal components that were chosen by the 
selection pattern of the HANR method. In Figs. 5-7, the 
AP values of the MCG signal components are higher 
than those of the noise components. The lower AP values 
of the MCG signal components, the lower SNRs. 

Fig. 8 shows the AP values of all the independent 
components (8 × 3 = 24 components) of the simulation 
data at all SNRs tested. The 24 independent components 
have been arranged in descending order of the AP value. 
All AP values of the MCG signal components were 
higher than those of the noise components when the 
noise and MCG signal components were distinguished 
by the selection pattern of the HANR method. The 
boundary between the MCG signal and the noise 
components is at the AP value of 0.6; the MCG signal 
components had the AP values > 0.6 while noise 
components had the AP values < 0.6. 
 
4.3 Comparison with waveforms 

Figs. 9-11 show the waveforms of the independent 
components of the simulation data at SNRs of 0 dB, -10 
dB, and -20 dB, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Example of autocorrelation transformation 
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Fig. 4 Peaks of autocorrelation functions 

Fig. 5 AP value of simulation data at 0 dB 

Fig. 6 AP value of simulation data at -10 dB 

Fig. 7 AP value of simulation data at -20 dB 

Fig. 8 AP value of all simulation data 
In Fig. 9 (0 dB), performing a subjective judgment 

from the waveforms would lead to the selection of Nos. 2, 
3, 4, and 6 as the MCG signals. This selection pattern is 
identical to the selection pattern of the HANR method. It 
is also identical to the result using high or low AP values, 
shown in Fig. 5. 

Similarly, the subjective judgment method would 
select Nos. 1, 2, 4, and 5 in Fig. 10 (-10 dB) and Nos. 1 
and 3 in Fig. 11 (-20 dB) as the MCG signals. Moreover, 
these selection patterns are the same as those 
determined by the HANR method and the results using 
high or low AP values, as shown in Figs. 6 and 7. 

Fig. 9 Waveform of independent components (0 dB) 

Fig. 10 Waveform of independent components (-10 dB) 

Fig. 11 Waveform of independent components (-20 dB) 

Fig. 12 Result of the noise reduction (0 dB) 
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Fig. 13 Result of the noise reduction (-10 dB) 

Fig. 14 Result of the noise reduction (-20 dB) 

4.4 Waveform of noise reduction 
Figs. 12-14 show examples of the waveforms before and 

after noise reduction for the simulated data at SNRs of 0 
dB, -10 dB, and -20 dB, respectively. The SNRs of the 
reconstructed data were 33.98 dB, 19.17 dB, and 13.56 
dB for the simulated data at SNRs of 0 dB, -10 dB, and 
-20 dB, respectively. The SNRs were calculated from the 
R-wave peak values (signal) and the baseline amplitudes 
(noise). 

5. Discussion 
First, we discuss some relevant conditions for 

successfully applying the HANR method. In many cases, 
this method can distinguish the MCG signals from the 
noise components. This method rejects components that 
have periods (interval of autocorrelation peaks) of 0.5 s 
(2 Hz) or less, because the MCG signals have a period of 
0.5 s or more. However, this method cannot distinguish, 
when noise with a period of 0.5 s or more is applied. 

Second, we discuss the threshold of the HANR method. 
The threshold is dependent on the SNR. Hence, as it is 
possible to approximate the SNR from the amplitude of 
the environmental magnetic noise and the general 
MCGs, we will determine the threshold value on which 
it is based. If the SNR is in the range 0~-20 dB, we can 
perform this method utilizing the threshold (0.6). Based 
on the threshold (0.6), Fig. 15 shows the SNRs of the 
reconstructed data for which the threshold ranged from 
0.4 to 0.9. The method was able to maintain the accuracy 
of noise reduction when the threshold ranged from 0.6 to 
0.66. 

Third, we discuss the processing time. In this time, 
these processes were performed by two programs to 
check the AP values or other selection patterns. The 
total processing time was approximately 30 s when the 
method was performed utilizing the two programs. The 
total time was not considerably long as compared to the 
measurement time (a few minutes). 

Finally, we discuss the application of this method for 

heart disease. In case of arrhythmia, MCGs can be 
measured utilizing the proposed method because 
independent components that are representing MCG 
signals have same peak timings. However, MCGs cannot 
be acquired using the proposed method, if we cannot get 
those synchronization. 

Fig. 15 SNRs with respect to varying threshold 

6. Summary 
We proposed a new method of component selection 

using ICA to perform the selection automatically and 
quantitatively. The ability of this proposed method to 
distinguish independent components is on par with that 
of the HANR method and the subjective judgment of 
waveforms of independent components. 

The boundary between the noise and the MCG signal 
components was at the AP value of 0.6, which was 
determined using the HANR method. The noise 
components had AP values of 0.6 or less, while the MCG 
signal components had AP values of 0.6 or greater.   
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