MR センサを用いた磁気粒子イメージング

Suko Bagus Trisnanto¹、笠島多聞²、悪七泰樹²、竹村泰司¹ (¹横浜国立大学、²TDK 株式会社)

Magnetic particle imaging using magnetoresistive sensor Suko Bagus Trisnanto^{*1}, Tamon Kasajima², Taiju Akushichi², Yasushi Takemura¹ (¹Yokohama National University, ²TDK Corporation)

<u>はじめに</u>

磁気粒子イメージングは、腫瘍等に選択させた磁性ナノ粒子を検出、画像化する技術である¹⁻³⁾。20 kHz 程度の交流磁界を印加し、磁性ナノ粒子を磁化させ、その磁化信号の時間変化を検出コイルへの誘導起電力として測定する手法が主に用いられている。本講演では、磁気抵抗効果(MR)センサを用いた磁性ナノ粒子の検出を報告する。MR センサの入力磁界に対して出力電圧が飽和する非線形特性を応用することにより、従来よりも印加する交流磁界の強度や周波数を低減できる可能性が示唆された。

実験方法と結果

TDK 製の MR センサを使用した。室温動作下で微弱磁界を検出することが可能であり、心臓磁界計測への 応用も報告されている⁴⁾。磁気粒子イメージングを試みた測定系を Fig.1 に示す。試料には超常磁性を示す MRI 造影剤 Resovist[®]を用いた。エポキシ樹脂に分散させた固相、直径 3 mm の円錐形状であり、2.8 mg-Fe を 含む。傾斜静磁界は 0.8 T/m、交流励磁磁界は 0.04 mT/ μ_0 @10 kHz とした。500 Hz 及び 502.5 Hz の走査磁界 により画像構成した結果を Fig. 2 に示す。Reference は試料なし、検出コイルへの誘導起電力の基本波信号に よる画像構成、検出コイルを 1 次コイルとして 2 次コイルがつくる磁界を測定する MR センサ出力の第 7 高 調波信号による画像構成である。MR センサを使用して、線形磁化応答する磁性ナノ粒子のイメージングが 可能であることがわかった⁵。

参考文献

- 1) B. Gleich, J. Weizenecker, Nature, 435, 1214, 2005.
- 2) 吉田、日本磁気学会 まぐね, 13(4), 161, 2018.
- 3) S. B. Trisnanto, Y. Takemura, *Physical Review Applied*, 14, 064065, 2020.
- 4) 寺園、澁谷、大川、日本磁気学会 まぐね, 14(4), 211, 2019.
- 5) S. B. Trisnanto, T. Kasajima, T. Akushichi, Y. Takemura, submitted.

Fig. 1 Simplified instrumentation setup of MPI scanner with MR sensor.

Fig. 2 Axial cut of a cone shaped solid Resovist[®] phantom reconstructed from (a) pickup coil and (b) MR sensor signals.

人体サイズ MPI に向けた超伝導傾斜磁界コイルの設計

吉本昌史¹、森岡大陽¹、笹山瑛由¹、竹村泰司²、吉田敬¹ (¹九州大学、²横浜国立大学)

Design of gradient magnetic field coil using superconducting tape for human body size MPI Masafumi Yoshimoto¹, Hiroaki Morioka¹, Teruyoshi Sasayama¹, Yasushi Takemura², Takashi Yoshida¹ (¹Kyushu Univ., ²Yokohama National Univ.)

はじめに

磁性ナノ粒子からの磁化信号を読み取ることで、疾患領域の画像化を 高感度・高分解能で行う磁気粒子イメージング(MPI)が注目されている。 MPIの人体応用に向けて、装置のボア径拡大が求められるが、従来通り の銅コイルを用いると、MPIで必要な傾斜磁界を発生させることができ ない。そこで、銅コイルに代わり高磁界を発生可能な超伝導コイルを用 いることが有用だと考えられる。本研究では、超伝導コイルを用いるこ とで、人体サイズの MPI 装置において必要な傾斜磁界が発生可能なこ と、またそれを、磁気共鳴映像法(MRI)の静磁界コイルを逆接続で利用 することで実現可能であることを示す。

方法

Fig.1 に示すように、人体サイズの MPI 装置としてボア径 600 mm を想定 し、超伝導コイルは内径 800 mm、コイル間距離 690 mm のマクスウェルコイ ルとした。用いる超伝導線材は幅 4 mm、厚さ 0.15 mm の高温超伝導テー プ線材を想定し、巻き数は一層 500 turn の超伝導コイルを積層させることで 変化させた。ビオ・サバールの法則を基に数値計算により、発生する磁界 の計算を行った。傾斜磁界は、コイル巻き数(層数)を変化させることにより 1 T/m、2 T/m の発生を目指した。

結果

Fig.2(a) に 100 A の電流を逆向きに流し傾斜磁界を発生させたときの、 マクスウェルコイル中心軸上での磁束密度を示す。横軸は距離であり、z = 0 mm をマクスウェルコイル間の中心とした。2500 turn (5 層)において 1 T/m、5000 turn (10 層)において 2 T/m を実現できることが分かる。次に、傾 斜磁界 1 T/m、2 T/m を発生する巻き数(層数)において、100 A の電流を 同方向に流した場合の磁束密度の結果を Fig.2(b) に示す。z = 0 mm にお いて 2500 turn のとき 336 mT、5000 turn のとき 649 mT となった。超伝導コ イルを用いる MRI では、1.5 T~3 T の一様な静磁界が用いられている。こ のことから、MPI と MRI の一体化の際に、MPI 用超伝導コイルを追 加することなく、MRI 用超伝導コイルの一部を用いることで MPI に 必要な傾斜磁界を発生できることが分かる。

Fig.1 Schematic of gradient coil

Fig.2 Magnetic flux density along the center axis of the coil (a) gradient magnetic field (b) uniform magnetic field

パルス励磁による磁性ナノ粒子のイメージング手法

田中靖也¹, 平野陽豊¹, 二川雅登¹, 竹村泰司², 大多哲史¹ (¹静岡大学, ²横浜国立大学)

Imaging technique of magnetic nanoparticles using pulse magnetic field S. Tanaka¹, H. Hirano¹, M. Futagawa¹, Y. Takemura², S. Ota¹

(¹Shizuoka University, ²Yokohama National University)

はじめに

がん等の疾病に対する早期診断技術として、磁性ナノ粒子と磁場を用いた画像診断技術が期待されている。 この技術は、コイル内部に交流磁場を印加することで得られる特有の磁化信号を検出する。また、磁性ナノ 粒子は高速で応答するパルス磁場を印可することで、磁気緩和の実測に成功している¹⁾。本研究では、パルス 励磁による新たなイメージング手法について、粒子サンプルを小型コイル外部に配置し、コイルを掃引する ことで空間分布を計測することで評価した。

<u>実験法・結果</u>

本研究では、Fe₃O₄ナノ粒子 (M-300, シグマハイケミカル社)をサンプルとして計測を行った。立ち上が りの応答が高速のパルス励磁を実現する面積 25 mm²の正方形型の励磁コイルを作成し、立ち上がり時間 100 ns、サンプルへの磁場強度 2.25 mT のパルス励磁を実現した。励磁コイル内部に幅 1 mm の円型検出コイル を 1.6 mm 間隔で 2 つ配置し、励磁・検出コイルを含む磁気検出プローブを構成した。このとき、検出コイル を励磁コイルに対して直交させることで、励磁コイルによって生成された磁束が検出コイルを鎖交しないた め、検出コイルではサンプルから得られる磁化成分のみを検出する²⁾。コイルを掃引する距離は、2 つのサン プルの中心を 0 mm 位置として-7 mm から 7 mm まで掃引し、0.5 mm 間隔で計測した (Fig. 1)。

Fig. 2 にコイルを x 軸方向に掃引させたときの粒子信号強度を示した。2 つのサンプルは-4 mm ~ -1 mm 地 点と 1 mm ~ 3 mm 地点に配置されている。各サンプルの位置にて粒子信号強度の増加を確認するとともに、 各サンプルの中心位置に粒子信号強度のピークが確認された。また、2 つのサンプルの粒子信号強度のピー クの差はサンプルに含まれる粒子質量(3.3g 及び 1.5g)に比例することを確認し、粒子信号強度から検出対 象の位置と量を推測できることを確認した。講演では、検出プローブとサンプル配置に依存した信号強度に ついて詳細に述べる。

<u>謝辞</u>

本研究の一部は、科研費 20H05652、20H02163 の助成を受けて実施した。

<u>参考文献</u>

- 1) S. Ota, and Y. Takemura, J. Phys. Chem. C, 123, 28859-28866 (2019).
- 2) T. Sasayama, T. Yoshida, and K. Enpuku, J. Magn. Magn. Mater., 505, 166765 (2020).

Fig. 1 Position of an exciting coil, detection coil, and magnetic nanoparticle sample.

Fig. 2 One-dimensional measurement of two particle samples.

磁気ナノ粒子トモグラフィへの種々の空間フィルタ適用結果の比較

岡村直樹、東野光宇太、笹山瑛由、吉田敬 (九州大学)

Comparison of the application results of various spatial filters in magnetic nanoparticle tomography Naoki Okamura, Kohta Higashino, Teruyoshi Sasayama, Takashi Yoshida (Kyushu University)

目的

近年、磁気ナノ粒子を用いた癌などのイメージング手法が注目されており、我々も多数の検出コイルでイ メージングする磁気ナノ粒子トモグラフィを提案している。先行研究¹⁾では逆問題解析において、計算時間 の短縮やアーチファクトの改善を目的として、磁気ナノ粒子トモグラフィに脳磁図などで用いられる空間フ ィルタ法の1つであるミニマムバリアンス空間フィルタ(MV-SF)を適用した。本稿では、それ以外のよく 知られた空間フィルタを適用し、得られた結果について比較を行った。

方法

実験装置を図1に示す。励起コイルに交流電流を流して磁気ナノ粒子を磁化し、磁気ナノ粒子から得られ る第3高調波の磁場信号を16個の検出コイルを用いて取得した。磁気ナノ粒子サンプルは、Resovist(富士 フィルム RIファーマ)を使用し、150 µl あたりの鉄含有量が500 µg と400 µg になるように glycerol で固相 化したものを用いた。深さ30 mm の位置にサンプル1つを配置した時と2つ配置した時の磁場計測を行い、 空間フィルタ(MV-SF の他、eLORETA²)を適用しサンプルの位置を推定した。

結果

逆問題解析結果の一例を図2に示す。図2(a)は濃度が500 μgFeのサンプルを1つ配置した場合、図2(b)は 濃度が500 μgFeと400 μgFeの2つのサンプルを配置した場合のMV-SFとeLORETAを適用した場合の結果 である。図2(a)からMV-SFは eLORETAよりもスパースな解を検出できていることが分かる。図2(b)からMV-SFでは信号が消失しているのに対し eLORETAでは2つのサンプルを検出できていることが分かる。今後、 サンプルの位置や濃度を変化させた場合などの他の条件について、比較検討をする予定である。

謝辞:本研究は JSPS 科研費(JP21H01342)の助成を受けたものである。

<u>参考文献</u>

- 1) N. Okamura, T. Sasayama, and T. Yoshida, IEEE Trans. Magn., in press. DOI: 10.1109/TMAG.2021.3078748
- 2) R. D. Pascual-Marqui, Mathmatical Phys., ArXiv: 0710.3341 (2007).

脳内磁気粒子イメージングのための酸化鉄ナノ粒子の表面設計

清野智史¹,池畠博人¹,田邉瑞姫¹,梅田知宙²,富山貴美²,田中晶子³,坂根稔康³, 山内一輝⁴,野村航大⁴,殿岡俊⁴,井澤彰宏⁵,藤枝俊¹,中川貴¹ (¹大阪大学,²大阪市立大学,³神戸薬科大学,⁴三菱電機㈱,⁵日本メジフィジックス㈱) Surface design of iron-oxide nanoparticles for intracerebral magnetic particle imaging S.Seino¹, H. Ikehata¹, M. Tanabe¹, T. Umeda², T. Tomiyama², A. Tanaka³, T. Sakane³ K. Yamauchi⁴, K. Nomura⁴, S. Tonooka⁴, A. Izawa⁵, S. Fujieda¹, T. Nakagawa¹ (¹Osaka University, ²Osaka City University, ³Kobe Pharmaceutical University, ⁴Mitsubishi Electric Corp., ⁵Nihon Medi-Physics Corp.)

1. 研究背景

様々な疾病領域を画像化する技術として、磁気粒子イメージング(Magnetic Particle Imaging: MPI)の医療診 断分野への応用が期待されている。本研究では、対象をアルツハイマー病の早期診断と設定し、脳内の Amyloid β(以下、Aβ)へと輸送・集積可能なトレーサーの実現を目指し、コアとなる磁性酸化鉄ナノ粒子の表面修 飾法について検討を行った。構築した表面修飾プロトコルと、得られた粒子の特性について報告する。

2. 実験

フェルカルボトランに永久磁石による磁気分離操作を行い、得られた磁気画分を、酸化鉄ナノ粒子として使用した。放射線を利用した手法により、酸化鉄ナノ粒子表面に金ナノ粒子を担持させ、表面修飾の足場として利用した^[1]。金担持酸化鉄ナノ粒子の分散液に、末端に-SH 基が修飾された PEG (PEG-SH, NH₂-PEG-SH)の水溶液を混合し、金への-SH 基の特異吸着を利用して粒子の PEG 化を行った^[2]。標的認識性能を付与するため、PEG 末端の-NH₂基を介して、プローブ分子の固定化を行った。得られた粒子の評価は、TEM、ICP、DLS、VSM 測定により実施した。

3. 結果と考察

粒子の TEM 像の例を図1に示す。酸化鉄ナノ粒子と金ナノ粒子が 複合体を形成している様子が観察された。DLS 径は約100 nm であ り、良好な水分散性を示した。表面修飾の前後で、磁場磁化曲線 を比較した結果を図2に示す。磁気的挙動が変化していないこと から、金担持・PEG 修飾・プローブ固定化といった表面修飾工程 が、酸化鉄ナノ粒子の磁気特性に影響を及ぼさないことが分かる。 プローブ分子が固定化された粒子の標的認識性能を、Ex-vivo 試験 で評価した。Aβが蓄積した細胞が含まれる脳細胞切片上に合成 した粒子分散液を滴下したところ、粒子が標的部位に選択的に 集積することが分かった。またモデルマウスを使用した In-vivo 試験において、経鼻投与された粒子がマウスの脳内に移行し、脳 内の Aβへの選択性を発揮することが示された。これらの結果か ら、本研究で提案した表面修飾プロトコルにより、脳内標的部位 に集積可能な磁性ナノ粒子が得られることが分かった。 本研究は、AMED の課題番号 JP 20hm0102073 の支援を受けた。

参考文献 [1] S. Seino et. al., Journal of Nanoparticle Research, 10, 1071–1076 (2008), [2] S. Seino et. al., Journal of Nanoparticle Research, 15, 1305 (2013).

図1 合成した粒子の TEM 像

高感度磁気粒子イメージングのための磁気粒子の磁気特性の評価

野村航大¹,山内一輝¹,鷲野将臣¹,松田哲也¹,岡田泰行¹, 進泰彰¹,清野智史²,中川貴²,紀和利彦³,殿岡俊¹ (¹三菱電機株式会社,²大阪大学,³岡山大学)

Evaluation of magnetic particle magnetization characteristics for high sensitivity Magnetic Particle Imaging

K. Nomura¹, K. Yamauchi¹, M. Washino¹, T. Matsuda¹, Y. Okada¹,

Y. Susumu¹, S. Seino², T. Nakagawa², T. Kiwa³, S. Tonooka¹

(¹Mitsubishi Electric Corp., ²Osaka University, ³Okayama University)

1. 研究背景

酸化鉄を主成分とする磁性ナノ粒子(MNP)からの高周波磁場応答を検出し、高感度にイメージングする 磁気粒子イメージング(Magnetic Particle Imaging: MPI)は新しい医療画像診断技術として注目されている^[1]。 MPIはMNP粒子量と信号強度に線形の関係があり定量測定に利点がある一方、磁気特性や溶媒環境によっ てもMPI信号強度が変動する。本研究では、市販のMNPであるResovist®と原液 Ferucarbotran を磁気分 離により磁場応答性の高い粒子を抽出した Ferucarbotran_Mag(FcM)^[2]を MPI 装置にて評価した結果を 報告する。

2. 実験

FcM と Resovist®の磁化曲線は VSM を用いて測定し、MPI 信号は製作した小型 MPI 装置を用いて測定した。サンプルは 鉄濃度が 2.8mg/mL となるよう純水で希釈した。磁場振幅 21mT、周波数 500 Hz の交流磁場を印可、受信コイルで検出 した信号をロックインアンプにより同期検波することで高調 波成分の信号強度と位相を評価した。画像再構成を行うため サンプルは 3 次元スキャンにより、MPI 信号を取得した。

3. 結果と考察

FcM と Resovist®の磁化曲線を Fig.1 に示す。磁気分離により飽和磁化および磁化率が大きくなっており、磁場への応答性が高い粒子を抽出できていることを示している。

MPI装置での測定結果をFig.2に示す。FcMのMPI信号強度はResovist®と比較し2.1倍に向上しているが、励磁場強度21mTでのFcMの磁化はResovist®の約1.8倍であった。これはMPI信号がMNPの非線形応答を用いることに起因する。また、MNPの高調波の応答特性は溶媒の粘性などMNPが置かれる外部環境に依存する。従って、生体内で病変に結合した磁気粒子のMPI信号は、溶媒状態で計測するMPI信号とは異なる可能性がある。発表では、実際の生体環境下で重要になる粘性による高調波信号の変化および画像再構成結果に及ぼす影響を詳細に議論する。

本研究は、AMED の課題番号 JP 20hm0102073 の支援を受けた。

(deg.

the third harmonic signal

<u>参考文献</u> [1] T.Knopp et al. Phys. Med.Biol. 62 R124, [2] 吉田 敬:まぐね Magnetics Jpn. Vol.13, No.4,2018