NANOMET®積層コアを適用したインセット型 PM モータの実機評価

于 越, 平本 尚三*, 中村 健二 (東北大学, *㈱東北マグネットインスティテュート)
Prototype Evaluation of Inset PM Motor made of NANOMET[®] Laminated Core Y. Yu, S. Hiramoto*, K. Nakamura (Tohoku University, *Tohoku Magnet Institute Co., Ltd.)

はじめに

現在、モータ鉄心として一般に用いられている無 方向性ケイ素鋼板は、安価で飽和磁束密度も高いが、 高周波鉄損が大きいことが、高速回転化の課題とな っている。これに対して、ナノ結晶軟磁性合金の一 つである NANOMET[®]は飽和磁束密度が高く、かつ 低鉄損であることから、次世代のモータ鉄心材料と して期待されている。先に筆者らは、NANOMET[®] 薄帯の積層コアを用いて、スイッチトリラタンス (SR)モータを試作し、実機評価を行ったところ、 鉄損が大きく低減し、効率が向上した¹⁾。そこで本 稿では、新たにインセット型の永久磁石(PM)モー

インセット PM モータの試作試験結果

タに適用した結果について報告する。

Fig. 1 に, 試作したインセット PM モータの諸元を 示す。3 相 6 スロット 4 極機であり,定格回転数は 12,600 rpm,定格トルクは 200 mN·m である。高速回 転に伴う磁石渦電流損を防ぐため,回転子磁石はネ オジムボンド磁石とした。ただし,磁石性能という 観点から見ると,ボンド磁石は焼結磁石に劣るため, 一般的な径方向着磁では無く,極異方性着磁を採用 した。先行研究²⁾では,一般的な無方向性ケイ素鋼 板(35A300)を用いて試作試験を行ったが,本稿で は NANOMET[®]薄帯の積層コアを用いて固定子鉄心 を試作し,換装して実機試験を行った。

Fig. 2 に、電流密度対トルク特性の実測値を示す。 この図から、両材料ともほぼ同等のトルク特性を有 することがわかる。

Fig. 3 は効率特性である。この図から明らかなように、NANOMET[®]を適用した PM モータは、全動作領域で効率が改善した。なお、実機の最高効率は約95%であった。

<u>参考文献</u>

- 永井,三ツ谷,平本,中村, "NANOMET[®]積層コアを適用した高速 SR モータの実機評価",日本磁気学会論文特集号, Vol. 5, No. 1, pp. 22-26 (2021)
- 内山、中村、一ノ倉、後藤、郭、"インセット型高速 PM モータの試作試験"、日本磁気学会論文特集号、Vol. 4、No. 1、pp. 67-71 (2020)

Fig. 1 Specifications of a prototype inset PM motor.

Fig. 2 Measured torque characteristics.

Fig. 3 Measured Efficiency Characteristics.

セグメント構造アウターロータ型高速 PM モータに関する検討

櫻井 将,内山裕太郎,中村健二 (東北大学) Outer-Rotor-type High-Speed PM motor with Segmented-shaped Rotor S. Sakurai, Y. Uchiyama, K. Nakamura (Tohoku University)

はじめに

近年,スマートフォンなどの情報端末による通信 量の大幅な増加に伴い,データサーバ等の増強が進 められているが,CPUの高性能化に伴う局所発熱の 増加や,サーバの小型化に伴う熱密度の増加が顕在 化している。そのため,これらを冷却するファンの 高出力・高効率化が喫緊の課題である。

先に筆者らは、冷却ファン用アウターロータ型永 久磁石 (PM) モータに関して、ネオジム焼結磁石を 周方向に分割し、回転子鉄心に浅く埋め込むことで、 磁石渦電流損を抑えながら、トルクを向上させる手 法を提案した^{1),2)}。

本稿では、外側回転子をセグメント構造にするこ とで、リラクタンストルクの併用を可能にするとと もに、磁石渦電流損の低減も狙った新しい構造の PM モータについて、有限要素法(FEM)を用いて 検討を行ったので報告する。

セグメント構造 PM モータの特性

Fig. 1(a)に,外側回転子をセグメント構造にしたア ウターロータ型 PM モータを示す。4 つに分かれた 鉄心の間に,周方向に着磁された磁石が挟まれた構 造を有し,これによりリラクタンストルクの併用が 可能になっている。また,いわゆる *d* 軸が鉄心の中 央を向くことから,電機子磁束は磁石にほぼ流入し ないため,ネオジム焼結磁石を用いることができる。 なお,同図(b)は比較に用いた従来のインセット型の PM モータである。

Fig. 2 に, セグメント構造 PM モータの電流位相角 - トルク特性の計算値を示す。電流位相角 15 deg で トルクが最大となり, その時のリラクタンストルク の割合は約 7%である。

Fig. 3 に効率の計算値を示す。この図を見ると, 全領域で提案の PM モータの効率の方が高いことが わかる。なお,定格点(3000 0rpm, 60 mN·m)にお ける効率は約 96%であった。

今後は実証実験を行う予定である。

(a) Segmented-shaped rotor(b) Inset PM rotorFig. 1 Schamatic diagram of outer-rotor-type PM motors.

Fig. 2 Torque versus current phase angle characteristic of the proposed PM motor with segmented-shaped rotor.

Fig. 3 Comparison of the efficiency

参考文献

1) 櫻井, 中村, 日本磁気学会論文特集号, **4**, 72 (2020) 2) S. Sakurai, K. Nakamura, *Journal of the Magnetics Society* of Japan, **45**, 70 (2021).

小型 EV 用アキシャルギャップ型スイッチトリラクタンスモータの 損失に関する実験的考察

佐藤航汰,中村健二 (東北大学)

Experimental Study of Losses of Axial-Flux-type Switched Reluctance Motor for Compact EV

K. Sato, K. Nakamura

(Tohoku University)

はじめに

これまで筆者らは, Fig. 1 に示すダブルステータ 構造のアキシャルギャップ型スイッチトリラクタン スモータ (AFSRM)の試作評価と,小型電気自動車 (EV)用インホイールモータへの適用について検討 を進めてきた。その結果,試作 AFSRM は小型 EV に適用するための目標トルクを満足し,また実車体 に搭載した走行も実現した¹⁾。しかしながら一方で, 試作 AFSRM の効率は 3 次元有限要素法 (3D-FEM) による設計値を下回ったことから,この原因の解明 と改良が必要不可欠である²⁾。

そこで本稿では,試作 AFSRM の損失のうち,特 に鉄損に着目し,種々の実験を行うことで効率低下 要因について検討を行ったので報告する。

AFSRM の効率低下要因の分析

Fig. 2 に, 鉄損を考慮した場合の AFSRM の等価回路を示す。この等価回路においてrは等価鉄損抵抗であり,この抵抗における損失が,AFSRM で生じる鉄損となる。等価鉄損抵抗は Fig. 3 に示すように,モータ巻線へのパルス電圧印加時の電流応答波形と,巻線インダクタンスから計算できる。なお,等価鉄損抵抗はモータの回転子位置角と印加電圧の周波数に依存するため,AFSRM の動作周波数(58~320 Hz)において,電気角1周期を10分割し,各回転子位置角ごとに測定を行った。

Fig. 4 に、等価鉄損抵抗に基づく鉄損を考慮した 場合の効率特性を示す。この図を見ると、実測値と の誤差が小さくなり、精度が改善されたことが了解 される。すなわち、現状の 3D-FEM では未考慮の鉄 損が生じていることが明らかとなった。今後は、こ の損失の発生個所特定と改善に取り組む予定である。

Fig. 1 Specifications of a prototype AFSRM.

Vph:Excitation voltageL:Motor inductanceR:Winding resistancer:Equivalent iron loss resistance

Fig. 2 Equivalent circuit of AFSRM.

Fig. 3 Voltage and current waveforms of AFSRM considering iron losses.

Fig. 4 Comparison of efficiency.

参考文献

- 1) K. Takase, H. Goto, and O. Ichinokura, *The Papers of Tech. Meeting on Magn., IEE Jpn.*, MAG-17-002 (2017).
- H. Aizawa and K. Nakamura, T. Magn. Soc. Jpn. (Special Issues), 4, 62 (2020).

アキシャルギャップ誘導モータの設計手法に関する検討

照井智理、吉田征弘、田島克文 (秋田大学) A Study on Design Method of Axial Gap Induction Motor T. Terui, Y. Yoshida, K. Tajima (Akita Univ.)

<u>はじめに</u>

筆者らは、トルク密度の向上が期待できるアキシャルギャップ構造の誘導モータについて研究を進めてお り、アキシャルギャップ構造の適用で従来構造の誘導モータを上回るトルク密度を確認している¹⁾。また、 磁気抵抗回路網解析(RNA)をアキシャルギャップ誘導モータに適用し、特性算定を行ったところ、有限要 素解析と比べ高速で特性算定が可能であることがわかった²⁾。そこで、本稿では従来構造の誘導モータに関 する設計手法³⁾を応用したアキシャルギャップ誘導モータの設計手法について検討し、得られたモータ形状 で RNA モデルを作成し、特性を算定したので報告する。

<u>アキシャルギャップ誘導モータ設計の概要</u>

本研究で行ったアキシャルギャップ誘導モータの 設計は、微増加比例法に基づく電気装荷および磁気 装荷の算出をアキシャルギャップ誘導モータに適用 したものである。アキシャルギャップ構造は2つの ギャップ層を有する構造をとることができるため、 ギャップ層数を考慮するためのギャップ係数を決め られるようにした。磁気装荷、ギャップ係数、比磁 気装荷により要求仕様を満たすギャップ面積を算出 することでモータ外径が決定する。固定子巻線およ び回転子導体の断面積は、要求仕様から算出するこ とができ、アキシャルギャップ誘導モータの軸長が 決定し、モータ形状が決定する。

<u>RNA による特性算定</u>

定格出力 0.75 kW のアキシャルギャップ誘導モー タを設計し、RNA による特性算定を行う。設計した モータの要求仕様を表1に示す。また、図1に RNA による特性算定結果を示す。図1 中の赤点は出力 0.73 kW の動作点を示しており,目標とした定格出 力付近であることがわかる。このことから、今回検 討を行った設計手法によるアキシャルギャップ誘導 モータの設計が可能であることが明らかとなった。

Table.1 Requirements specification of the motor

Rated output	0.75 kW
Effective value of AC voltage	200 V
Frequency	50 Hz
Number of poles	4

Fig.1 Calculation result of characteristics by RNA

参考文献

- 1) 酒井諒典、吉田征弘、田島克文:「アキシャルギャップ誘導モータの基礎設計に関する検討」、電気学会 マグネティックス研究会資料、MAG-17-169、MD-17-111、LD-17-090 (2017)
- 2) 照井智理、吉田征弘、田島克文:「RNA に基づくアキシャルギャップ誘導モータの効率マップ作成手法 に関する検討」、電気学会マグネティックス研究会資料、MAG-21-051 (2021)
- 3) 竹内寿太郎、西方正司:「大学課程 電気設計学(改訂3版)」、pp.77-115、株式会社オーム社(2016)