スキルミオン構造を利用した4値メモリの研究

渡邊丈士良、仲谷栄伸 (電通大情報理工)

Multiple-valued Memory Utilized Chiral Magnetic Syrmion

J. Watanabe, Y. Nakatani (Univ.of Electro-Comm.)

はじめに

近年、不揮発性メモリの一種として Spin Transfer Torque- MRAM(以下 STT-MRAM) が研究されている。STT-MRAM は不揮発性と読み書きが高速 であるという特徴がある。この特徴を利用することでキャッシュメモリへの 利用も可能と考えられている。本研究ではさらにメモリの大容量化のために、 通常のメモリが磁化方向の違う単磁区構造を使用する 2 値メモリであるのに 対し、さらにスキルミオン構造¹⁾を考慮することで4つの磁化構造 (Fig.1)を 持つ4 値メモリを考えた。具体的に4つの磁化構造とは、全てが上向きの単

Fig. 1 Magnetization distributions for multiplevalued memory

磁区構造(以下、WSD)、中心が上向きのスキルミオン構造(以下、cWSK)、全てが下向きの単磁区構造(以下、BSD)、中心が下 向きのスキルミオン構造(以下、cBSK)である。本研究ではこの4値メモリに必要な「磁化構造の行き来に必要なエネルギーバリ アを等しくするために4つの磁化構造のエネルギーが同じであり、4状態間のエネルギーバリアがメモリとして十分である材料定 数」と「実用的な切り替え方法」についてマイクロマグネティックシミュレーションを用いて調べた。

シミュレーション概要

直径が 60 nm、膜厚が 0.4 nm の円形薄膜を計算対象とし、シミュレーションの為これを格子幅 1.0 nm で離散化した。材料定数 ¹⁾ は、飽和磁化 $M_s = 580$ emu/cm³、損失定数 $\alpha = 0.1$ 、 $\gamma = 17.6$ Mrad/s · Oe、分極率 $\eta = 1.0$ とした。シミュレーションでは、交換スティッフネス定数 A、DMI 定数 D、磁気異方性定数 K_u を変化させることで WSD と cWSK のエネルギーが等しく、熱安定性指数 (以下、 Δ) が 40²⁾ となる組み合わせを求めた。続いて、その組み合わせの条件の下で WSD には-z 方向、cWSK には +z 方向のスピン電流 ³⁾ を加え、電流密度による磁化構造の変化をシミュレーションにより調査した。

結果

シミュレーションにより求めた WSD と cWSK のエネルギーが等しく、 Δ が 40 となる材料定数を Table 1 に示す。これらの条件 に対して、パルス幅が 0.02 ns で 500~1000 GA/m² の電流密度を加えた後、1 ns 放置させたところ、Fig.2 のような結果が得られた。 この時、(a) は WSD に-z 方向のスピン電流を加えた時の結果であり、(b) は cWSK に +z 方向のスピン電流を加えた時の結果である。この二つの結果から $A = 2.0, 2.5 \mu erg/cm$ で

ある時、広いマージンの電流密度で高速な磁 化状態の切り替えが可能であると分かった。

	2	2
$A \mu \text{erg/cm}$	$D \text{ erg/cm}^2$	$K_{\rm u}$ Merg/cm ³
0.5	3.12	14.43
1.0	3.78	10.15
1.5	4.67	9.31
2.0	5.60	8.77
2.5	6.62	8.74
3.0	7.69	8.85

Table 1 Material parameters for $\Delta = 40$

参考文献

- 1) J. Sampaio, Nature Nanotech, 8, 839844 (2013)
- 2) K. Ikegami , IEEE, IEDM.2015.7409762

3) J. Miltat, et. al., J. Appl. Phys., 89, 6982 (2001).

Fig. 2 Spin configurations at various current densities

TbFeCo 膜上の磁気スキルミオニウムの制御

加藤叡、大原健太郎、張溪超、夏静、劉小晰 (信州大学、香港中文大) Control of magnetic skyrmionium on TbFeCo films Satoshi Kato, Kentaro Ohara, Xichao Zhang, Jing Xia*, Xiaoxi Liu (Shinshu Univ., CUHK*)

はじめに

近年、磁気スキルミオンをはじめとする磁性薄膜上に発現するトポロジカルナノ構造が注目を集めている。 磁気スキルミオンは熱ゆらぎや不純物に対して堅牢であり、ナノサイズと非常に小さく、さらに磁壁メモリ に比べて閾値電流密度が低い。そのため、磁気メモリやロジック素子など超高密度・超低消費電流への応用 が期待されている[1]。

しかし、電流駆動の磁気スキルミオンは、スキルミオンホール効果によって消失するという重大な欠点が ある[2]。スキルミオンホール効果を克服するため、有望なアプローチの1つとして、磁気スキルミオニウム の利用がある[3]。磁気スキルミオニウムは、磁気スキルミオンのような構造を持つがトポロジカル量子数が 0のため、スキルミオンホール効果の影響を抑えることができる[2]。磁気スキルミオニウムを磁気メモリや ロジック回路に応用するにあたり、大きさの制御は高密度化のため必要となる。今回我々は、TbFeCo薄膜中 の磁気スキルミオニウム発見とその磁界中の振舞を報告する。

実験方法

磁性薄膜の模式図を Fig.1 (a)に示す。作成した 磁性薄膜は 2.0×10⁻⁴Pa 雰囲気以下でマグネトロ ンスパッタを用いて作成した。作成した磁性薄膜 の磁区構造を観察するため、磁気光学カー効果顕 微鏡を使用した。電磁コイルを用いて適切な外部 磁場を印加しながら、磁区構造の変化を評価した。

実験結果

TbFeCo 膜は垂直磁気異方性を示すことは知ら れており、結晶の非対称性より DMI を有するた め、磁気スキルミオンの発現が期待されている [4]。実際に磁気光学カー効果利用顕微鏡を用い て観察したところ、磁気スキルミオニウムを発見 した。Fig.1 (c)のように磁気スキルミオニウムと

Fig. 1 (a) The schematic of TbFeCo magnetic layer. The unit of thickness is nm. (b) The schematic illustration of magnetic skyrmionium. (c) Dependence of size and shape of skyrmionium by applying external magnetic field.

その中心の磁気スキルミオンを垂直磁界中で観察したところ、-200mT 印加したとき磁気スキルミオンの変化 はなかったが、+200mT 印加したとき磁気スキルミオンの大きさが小さくなった。このように磁気スキルミ オニウムは外部磁場に対して非対称的な振舞をすることが実験的にわかった。

参考文献

- 1) W. Jiang, G. Chen, et al. Physics Reports. 704 (2014) 1-49.
- 2) X. Zhang, J. Xia, et al. Phys. Rev. B 2016, 94 (9), 094420
- 3) S. A. Obadero, Y. Yamane, et al. PHYSICAL REVIEW B 102, 014458 (2020)
- 4) M. Finazzi, M. Savoini, et al. PRL 110, 177205 (2013)

ノンコリニア反強磁性体逆ペロブスカイト窒化物薄膜における

異常ホール効果

^O(M2) 園田 航, 加藤 大雅, 松浦 健人, 強 博文, 羽尻 哲也, 植田 研二 , 浅野 秀文

(名古屋大)

Anomalous Hall effect of

noncollinear antiferromagnetic antiperovskite nitrides

[°]Kou Sonoda, Hiromasa Kato, Kento Matsuura, B.W. Qiang, Tetsuya Hajiri, Kenji Ueda, Hidefumi Asano

(Nagoya Univ.)

【研究背景】ノンコリニア反強磁性体は、ベリー曲率に起因した異常ホール効果(AHE)の発現などの特異な 磁気輸送特性を有し、スピントロニクスにおいて応用することが期待されている。そのため高速動作、低消 費電力性、耐久性に優れるスピン軌道トルクを用いた効率的な制御は応用に向けて重要である。[1,2]。我々 はこれまでに逆ペロブスカイト Mn 系窒化物 Mn₃GaN(MGN) と Pt の積層膜において、無磁場・室温でホール 抵抗が低電流密度(~1.5×10⁵ A/cm²) で制御可能である事を示した [1]。一方で、読み出しのシグナルであ る MGN 薄膜の AHE も、応用に当たって更なる改善が必要である。MGN 薄膜は歪みの印加によって、構造 の対称性を崩し、AHEを発現させることができる。加えて、一定以上の歪みの印加[3]や温度低下に伴い、フ ェリ磁性に遷移するといった特性がある。そこで、逆ペロブスカイト構造を為す材料の普遍的な AHE 特性を 明らかにする為、ネール点が室温以上であり、AHE 発現の報告のある Mn₃SnN(MSN) [4]についても調査を行 った。本研究では、ノンコリニア反強磁性体逆ペロブスカイト窒化物薄膜 Mn₃AN (A=Ga,Sn) において、様々 な歪み(c/a)と温度、及び元素置換における AHE の系統的な調査を行ったので報告する。

【実験方法】Mn₃AN (A=Ga,Sn)はAr + N₂ガス中で MgO(001)基板上に反応性スパッタリングにより作製 した。構造解析は XRD、磁化は SQUID により測定を行った。

【結果と考察】MgO(001) 基板上にエピタキシャル関係 Mn₃AN(A=Ga,Sn)(001)[100] // MgO(001)[100] で成 長させた MGN 薄膜と MSN 薄膜における XRD パターンを Fig. 1 に示す。スパッタガス中の № %及び成長 速度によって正方晶歪みを制御[4]した。それぞれの格子定数と歪みは、c_{MGN} = 0.3877 nm (c/a=0.996), c_{MSN} = 0.4041 nm(c/a=0.994)である。これらの単膜において明瞭な異常ホール効果を観測した。また、Mn₃AN (A=Ga,Sn) 薄膜の面内磁場7Tにおける異常ホール抵抗率(pAHE)の温度依存性をFig.2に示す。MGN及び MSN の 200K 以下において挙動の違いが観測された。これは A 元素の相違に起因した磁気構造の違いを反 映しているものと考えられる。講演では、Mn₃AN(A=Ga,Sn)の様々な歪み(c/a)における系統的なデータから も比較を行い、逆ペロブスカイト構造の AHE の支配的要因について議論する。

Fig. 1. XRD patterns of the MSN, and. MGN films.

Fig. 2. Temperature dependences of ρ_{AHE} at 7 T.

【参考文献】

[1] T.Hajiri et al., Appl Phys, Lett.115, 052403(2019).

[3] S Ishino et al., API Adv.8, 056312 (2018).

[2] H.Tsai et al., Nature.580, 608-613(2020).

[4] Yunfeng You et al., Appl, Phys, Lett.117, 222404(2020).

-32-

磁気スキルミオンの閉じ込め・保護の効果

大原健太郎¹, 張溪超¹, 陳银玲¹, 夏静², 周艳², 劉小晰¹ (信州大¹, 香港中文大²)

The Effect of Confinement and Protection of Skyrmions

Kentaro Ohara¹, Xichao Zhang¹, Yinling Chen¹, Jing Xia², Yan Zhou², Xiaoxi Liu¹

(Shinshu Univ.¹, CUHK²)

はじめに

強磁性体と重金属からなる空間反転対称性の破れた磁性多層膜で、ジャロシンスキ・守谷相互作用(DMI) によってカイラル磁壁や磁気スキルミオンなどのトポロジカル磁気構造は発現し、それがスピントロニクス 研究として注目されている。磁気スキルミオンはナノスケールの極小な大きさで、トポロジカル的にも保護 されているため、超高密度・超低消費電力のデバイスへの応用が期待されている^[1]。しかしながら、例えば 磁気スキルミオンを情報記憶媒体として電流で駆動する場合、磁気スキルミオンホール効果^[2]によって消失 してしまう可能性がある.そのため、磁気スキルミオンを特定の場所へ閉じ込め、保護することはデバイス 応用の基礎として重要である^[1].今回我々は磁性薄膜の磁気スキルミオンを垂直磁気異方性(PMA)とDMI を 局所的に変化させることによって閉じ込め・保護する効果について報告する^[3].

実験方法

磁性薄膜は初めにフォトリソグラフィー法で Pt(0.3)/FeCo(0.2)の下地層を製膜し,リフトオフ後に Pt(1.0)/CoNi(0.7)/Pt(0.5)/FeCo(0.4)/Pt(1.0)を製膜した. 製膜はすべて到達圧力 8.0×10⁻⁵ Pa 以下でマグネトロンス パッタにて製膜した. 膜厚の単位はすべて nm である.磁気特性は VSM と polar-Kerr 効果顕微鏡にて測定を 行った.磁区構造は磁気光学カー効果顕微鏡で観察を行った.

実験結果

Fig.1(a)のように異なる磁気特性を持 つ磁性薄膜を製膜した.Fig.1(b)は磁気ス キルミオンが発現する通常の磁気特性を 持つヒステリシスループで,Fig.1(c)は磁 気スキルミオンを閉じ込め・保護するた め強化された PMA と DMI を有するヒス テリシスループである.通常と強化され た PMA と DMI を持つ磁性薄膜の間には 磁気スキルミオンのエネルギー障壁が存 在し,それが磁気スキルミオンの閉じ込 め・保護の効果を促している.実際に, Fig.1(d)は異なる磁気特性に挟まれるこ とで磁気スキルミオンの閉じ込め・保護 の効果を示している.この結果から磁気

Fig.1 (a) Schematic of the experimental sample configuration. The enhanced perpendicular magnetic anisotropy (PMA) andDzyaloshinskii-Moriya interaction (DMI) is realized by fabricating an additional Pt/FcCo layer as indicated by the red layer. The boundary between areas with different PMA and DMI is indicated by the blue circle. The unit of thickness is nm. (b) Hysteresis loops of default PMA and DMI measured by VSM and polar-Kerr. (c) Hysteresis loops of enhanced PMA and DMI measured by VSM and polar-Kerr. (d) Experimental observation of room temperature stable skyrmions in default PMA and DMI which confined in parallel narrow channels formed by boundaries of stripe patterns with enhanced PMA and DMI. (e) Illustration of a NceI-type magnetic skyrmion stabilized by interfacial DMI.

スキルミオンが磁性薄膜の端で消失しない保護の効果を確認し、さらに異なるリソグラフィーパターンの製 膜も行ったところ、磁気スキルミオンの閉じ込め効果も確認した.この実験結果は磁気スキルミオンをニュ ーロコンピューティングなどのスピントロニクスデバイス⁴⁴に幅広く応用ができると考えている.

参考文献

- 1) Zhang, X.; et al. J. Phys.: Condens. Matter 2020, 32 (14)
- 2) Jiang, W.; et al. Nat. Phys. 2017, 13 (2), 162-169
- 3) Ohara, K.; et al. Nano Lett. 2021, 21, 10, 4320-4326 143001
- 4) Jibiki, Y.; et al. Appl. Phys. Lett. 2020, 117 (8), 082402

Configurable pixelated skyrmions on nanoscale grids

Xichao Zhang¹, Jing Xia¹, Keiichiro Shirai¹, Hiroshi Fujiwara¹, Oleg A. Tretiakov²,

Motohiko Ezawa³, Yan Zhou⁴, Xiaoxi Liu¹

¹ Department of Electrical and Computer Engineering, Shinshu University, Nagano 380-8553, Japan
² School of Physics, The University of New South Wales, Sydney 2052, Australia
³ Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
⁴ School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China

Topological spin textures can serve as non-volatile information carriers [1]. In this work, we study the dynamics of skyrmions on the artificial nanoscale square grid formed by orthogonal defect lines with reduced perpendicular magnetic anisotropy (PMA). A skyrmion on the grid is pixelated with a quantized size of the grid. We can store digital information in the position, size, and shape of skyrmions. The center of the skyrmion is quantized to be on the grid and the skyrmion shows a hopping motion instead of a continuous motion. We show that the skyrmion Hall effect can be perfectly prohibited due to the pinning effect of the grid. We computationally demonstrate that the position, size, and shape of skyrmions on the square grid are electrically configurable, which can be harnessed to build the programmable racetrack-type memory, multistate memory, and logic computing device. Our results will be a basis of future digital computation based on skyrmions on the grid.

References

Nature 442, 797 (2006); Science 323, 915 (2009); Nature 465, 901 (2010); Nat. Nanotechnol. 8, 899 (2013); J. Phys.: Condens. Matter 27, 503001 (2015); Nat. Rev. Mat. 1, 16044 (2016); J. Phys. D: Appl. Phys. 49, 423001 (2016); Proc. IEEE 104, 2040 (2016); Nat. Rev. Mater. 2, 17031 (2017); J. Appl. Phys. 124, 240901 (2018); Natl. Sci. Rev. 6, 210 (2019); J. Phys. Condens. Matter 32, 143001 (2020); Phys. Rep. 895, 1 (2021); arXiv:2102.10464 (2021).

Figure 1. (a) Illustration of an ordinary skyrmion with a unity topological charge. (b) Illustration of a square-shaped skyrmion with a unity topological charge. (c) Top view of the sample with $K_d/K = 1$. K_d and K indicate the PMA constants for defect lines and unmodified areas, respectively. Defect lines are indicated by yellow lines. (d) Top view of the sample with $K_d/K = 0.2$. (e) Hopping motion of a square-shaped skyrmion induced by a current pulse. (f) Deformation of a square-shaped skyrmion induced by a current pulse.