YIG ナノ結晶体から形成された薄膜における 微細構造とスピンゼーベック起電力の相関解明

Elucidation of the correlation between microstructure and spin Seebeck voltage

in films composed of YIG nanocrystals

°正木信也¹,山本幹也¹,近藤慶太¹,山田啓介¹,黒川雄一郎²,

塩田陽一³,森山貴広³,小野輝男³,湯浅裕美²,嶋睦宏¹

岐阜大院自1,九大シス情2,京大化研3

°S. Masaki¹, M. Yamamoto¹, K. Kondo¹, K. Yamada¹, Y. Kurokawa²,

Y. Shiota³, T. Moriyama³, T. Ono³, H. Yuasa², and M. Shima¹

Gifu Univ.¹, Kyushu Univ.², Kyoto Univ.³

【緒言】ガーネット構造をもつ磁性絶縁体である Y₃Fe₅O₁₂ (YIG)は、ギルバートダンピング定数 (損失定数)が小さくスピン波を長距離伝搬できることから、大きいスピンゼーベック(SSE)起電 力^[1]を得ることのできる物質として、近年、スピントロニクス分野において盛んに研究がなされ ている^[1,2]。本研究では、化学合成法である共沈法とスピンコート法およびアニール処理により、 多結晶体のナノ粒子から形成された YIG 膜を作製し、アニール温度(*T*_a)を変数として YIG 膜の 結晶構造、微細構造、磁気特性、SSE 電圧(*V*_{SSE})の変化を調べ、*V*_{SSE} と微細構造の相関を明らか にすることを目的とした。

【実験方法】Fe³⁺, Y³⁺の各硝酸水溶液をFe³⁺: Y³⁺= 5:3の割合で混合し、アンモニア水溶液を滴下し pH 9.5 を保持しながら共沈法により YIG 前駆体を 合成した^[3]。得られた YIG 前駆体をエタノール中 に分散させ、スピンコート法により Si 基板上に塗 布した。次に大気雰囲気下において、 $T_a = 1073 \sim$ 1223 K の温度で 30 min アニールを行い、YIG 膜試 料を作製した。XRD, SEM, SPM を用いて試料の構 造を評価し、VSM、強磁性共鳴(FMR)、SSE 起電 力測定により磁気特性を調べた。

【結果と考察】スピンゼーベック係数($S = V_{SSE}^{Sat}$) ΔT)および熱電性能 ($TP = V_{SSE}^{Sat} \cdot L_Z / (L_x \cdot \Delta T)$) のアニール温度 T_a 依存性を図 1 に示す。 T_a の増 加に対し S 値の大きさが減少する結果が得られ た。 $T_a = 1173$ K における YIG 膜の表面および断 面の SEM 像を図 2 に示す。SEM 像から YIG ナ ノ粒子が凝集しており、画像解析から空隙率は 40%程あることがわかった。また、ナノ粒子の 平均粒子径は T_a の増加とともに増大した。S 値

Fig.1. SSE constant S and TP as a function of T_a .

Fig.2. Surface and cross section images of YIG films measured by SEM.

の減少は、T_aの増加により YIG 膜を形成する表面の空隙が大きくなり、マグノン励起の不均一 さ⁽⁴⁾に起因していると考えられる。本研究では、ナノ粒子の表面微細構造をアニール温度によ り制御することにより、SSE 起電力を変化させることができることを示した。

[参考文献] [1] K. Uchida, et al., *Nature* **455**, 778 (2008). [2] K. Uchida, et al., *Appl. Phys. Lett.* **97**, 172505 (2010); [3] B. Huang, et al., *J. Alloys Compd.* **558**, 56-61 (2013). [4] K.Yamada, et al., *J. Magn. Magn. Mater.* **513**, 167253 (2020).

[謝辞] 本研究の一部は、京大化研と名大未来研の R2 年度共同利用・共同研究の助成を受けて行われた。

Bi:YIG/Pt におけるスピンゼーベック効果の保持力の温度差依存性

髙橋優太、高瀬つぎ子、山口克彦 (福島大)

Temperature difference dependence of coercive force of spin Seebeck effect in Bi:YIG/Pt Y. Takahashi, T. Takase, K. Yamaguchi

(Fukushima Univ.)

はじめに

強磁性体と常磁性金属の接合系に温度差があるとき、その接合界面近傍にスピン流が誘起される現象とし て「スピンゼーベック効果(以下 SSE)」がある. 誘起されたスピン流は常磁性金属を介し, 温度差に比例した 電圧に変換される ^り. この機構により生成された電圧(以下 SSE 電圧)の温度差依存性は, 様々な材料において 報告がなされている.しかし, SSE 電圧の保持力に着目した報告は少なく, その温度依存性について系統的 に調査された報告はない.本研究では、Bi:YIG/Pt 試料における SSE 電圧の保持力の温度差依存性について、 系統的に調査した結果を報告する.

実験・結果

有機金属分解法を用いて、厚さ 0.45mm の石英ガラス基板上に多結晶 Bi:YIG 膜を製膜した後、簡易スパッ 夕装置(Ar・10Pa)により Pt 膜を 10nm 積層した.さらに,試料全体を大気圧下で 600℃・1hour の熱処理を施 した Bi:YIG/Pt 試料 ²⁾を用いる.

Fig.1 に各温度差における SSE 電圧と磁場のヒステリシス曲線の測定結果を示す. Fig.1 の測定に用いた試 料の面積は 7mm×13mm, Bi:YIG 膜の膜厚は約 400nm である. Fig.1 より SSE 電圧がゼロとなる時の外部磁 場(以下 SSE 電圧の保持力)が温度差によって変化していることが確認された. さらに,同じ面積, Bi:YIG 膜 の膜厚が約 200nm の試料においても同様の現象が確認された.また, Fig.2 に SSE 電圧の保持力の温度差依 存性を示す.加えて,外部磁場がゼロとなる時の SSE 電圧(以下残留 SSE 電圧)も示す.それぞれ, Fig.1 以外 の温度差も含め、外部磁場を+から-、-から+に印加したときの絶対値を平均した値で示す. Fig.2 より残 留 SSE 電圧は既知の通り温度差に比例したが、SSE 電圧の保持力は従来とは異なり、ΔT=15K 付近を境に急 激に変化していることが確認された.この SSE 電圧の保持力の変化の要因について,試料の面積や Bi:YIG 膜の膜厚を変化させ、系統的に SSE 電圧の保持力の温度依存性を示し、その関連性を検討する.

ਚ 600 120 0^e0 Coercive force of VRemanence of V 500 Coercive force of ${\cal V}_{SSE}$ 400 SSE 80 ь. 300 60 anence 200 40 Bem 100 R 200 £0 2530 $\mathbf{5}$ 101520 0 Temperature difference ΔT (K)

Fig.1 Hysteresis curve of voltage of spin Seebeck effect Fig.2 Temperature difference dependence of and magnetic field at each temperature difference

coercive force of V_{SSE} and remanence of V_{SSE}

参考文献

1) K. Uchida, H. Adachi, T. Ota, H. Nakayama, S. Maekawa, and E. Saitoh: Appl. Phys. Lett., 97, 172505 (2010). 2) Y. Takahashi, T. Takase, and K. Yamaguchi: T. Magn. Soc. Jpn. (Special Issues)., 4, 14-17(2020).

酸化鉄ナノ粒子分散膜を用いたスピン熱電変換の観測

黒川雄一郎、濵田勇樹、湯浅裕美 (九大)

Observation of spin-thermoelectric conversion using Fe-oxide nanoparticle assembled film

Y. Kurokawa, Y. Hamada, H. Yuasa

(Kyushu Univ.)

<u>序論</u>

電子スピンを用いた熱電変換技術は、熱流と直交する方向へ電圧を発生させることから発電素子の小型化 が可能であり、環境発電やセンサーなどへの応用が期待されている。電子スピンを用いた熱電変換は、主に 磁性金属薄膜を用いた異常ネルンスト効果や、¹⁾磁性絶縁体とスピン軌道相互作用の大きな重金属の二層膜 を用いたスピンゼーベック効果などに基づいている。²⁾これらの効果を用いた発電では大面積の薄膜を用い ることで発電量を増大させていくことが可能となるが、従来法では薄膜の作製に真空装置を用いた成膜が用 いられており、また、材料によっては高温での熱処理が必要となり、素子作製は簡単ではない。そこで、こ の研究では酸化鉄ナノ粒子を用い、スピンコート法による簡便な成膜法で熱電発電が可能な磁性薄膜を得る ことが可能かどうかを検討した。

<u>実験方法</u>

トルエン中に分散させた酸化鉄(Fe₃O₄)ナノ粒子(IO-O20-50, Cytodiagnostics Inc.)を熱酸化 Si 基板上に滴下 し、その後スピンコートによりナノ粒子分散膜にした。作製したナノ粒子分散膜は真空中で熱処理を行い、 溶媒を揮発させた。最後に、重金属層として Pt を 5nm 酸化鉄ナノ粒子分散膜上に堆積し、試料とした。

スピン熱電変換の観測は以下のように行った。まず、2つのペルチェ素子で試料を挟み、Si 基板の上部と 下部に高温部と低温部を設けることで試料に対して垂直に熱勾配を印可した。その後、試料に対して水平方 向に磁場を掃引しながら、磁場に対して直交する方向の電位差を測定し、熱勾配から得られる起電力を測定 した。

<u>実験結果</u>

真空中で熱処理を行った試料に対し、Ptを積層す る前に電気抵抗を測定したところ、有限の電気抵抗 が観察されず、絶縁体であることが分かった。試料 である Fe₃O₄は金属的な導電性を有することから、 ナノ粒子分散膜中では十分にナノ粒子同士が近づい ておらず、粒子が個々に存在することが予想され た。その後、Ptを積層した試料の電気抵抗を測定し たところ金属的な導電性が得られ、ナノ粒子同士が Pt 膜を通して金属的につながったことが予想され た。図1に熱勾配を印可した元で磁場を掃引し、電 圧を測定した結果を示す。結果から、外部磁場に対 し明瞭なヒステリシスが得られ、ナノ粒子を分散さ せた膜でスピン熱電変換が観察可能であることが分かった。

Fig. 1 Spin thermoelectromotive force (V_s) in Fe-oxide nanoparticle assembled film as a function of magnetic field (H) for two temperature difference (ΔT)

参考文献

- 1) M. Mizuguchi, et. al., Appl. Phys. Express 5, 093002 (2012).
- 2) K. Uchida, et al., Appl. Phys. Lett. 97, 172505 (2010).

謝辞

本研究は、パロマ財団の助成を受けて行われた。

Cu 基非平衡合金における巨大スピンホール効果

増田啓人¹、モダックラージクマール²、関剛斎^{1,2,3}、内田健一^{1,2,3}、ラウヨンチャン^{1,3}、

桜庭裕弥^{2,4}、井口亮²、高梨弘毅^{1.3,5}
(¹東北大金研、²物材機構、³東北大 CSRN、⁴JST PRESTO、⁵東北大 CSIS)

Large spin Hall effect in non-equilibrium Cu-based alloys

H. Masuda¹, R. Modak², T. Seki^{1,2,3}, K. Uchida^{1,2,3}, Y. Lau^{1,3}, Y. Sakuraba^{2,4}, R. Iguchi², and K. Takanashi^{1,3,5} (IMR, Tohoku Univ.¹, NIMS², CSRN, Tohoku Univ.³, JST PRESTO⁴, and CSIS, Tohoku Univ.⁵)

はじめに 非磁性物質におけるスピンホール効果および逆スピンホール効果は、電流-スピン流間の相互変換 を可能にするため、スピントロニクス研究において必要不可欠な現象となっている。スピンホール角 (*a*sh) は その変換効率を意味し、大きな *a*sh を示す材料の探索がデバイスの高性能化に向けた重要課題である。一般 的にはスピン軌道相互作用の大きい Pt や Ta、W などで大きな *a*sh が得られ、これらの単一非磁性金属が代表 的なスピンホール材料として広く利用されている。一方で、スピン軌道相互作用の小さい物質を母相として、 元素添加や合金化によって大きな *a*sh を実現する研究も報告されている。中でも、現在用いられている配線 技術と親和性が良い Cu に対し、Ir¹⁴や Bi⁵を添加することによって数%以上の *a*sh が得られることは、応用 上の大きな利点として注目されている。しかしながら、Cu-Ir 及び Cu-Bi の平衡状態図において固溶限は 10 at.%以下と狭く、熱非平衡状態図にない非平衡合金がどの程度のスピンホール効果を示すかは明らかになっ ていない。そこで本研究では、非平衡 Cu 二元系合金に着目し、組成傾斜膜におけるスピンペルチェ効果を熱 イメージングすることでスピンホール効果を一括評価できるコンビナトリアル手法のにより、広範な組成領 域において Cu-Ir 合金及び Cu-Bi 合金のスピンホール効果を調べた。さらに、コンビナトリアル手法により判 明した最大の *a*sh が得られる Cu-Ir に対して高調波ホール電圧測定を行い、*a*sh を定量評価した。

実験結果 コンビナトリアルスパッタ装置を用いて、Y₃Fe₅O₁₂(YIG) 基板上に 0 nm から 0.5 nm まで層厚を 傾斜させたウェッジ形状の Cu 層および Ir 層または Bi 層を交互積層させることによって、総膜厚 10, 20, 及 び 30 nm の組成傾斜膜を成膜した。Cu-Ir 組成傾斜膜に対して電子線マイクロアナライザーによる組成分析及 び X 線回折法を用いた構造解析を行ったところ、合金組成に対して格子定数が直線的に変化していることが 分かった。また、試料断面の透過型電子顕微鏡像には異相が観測されず、これらの構造解析の結果は、広い 合金組成範囲において非平衡 Cu-Ir 合金薄膜を実現できていることを意味している。

ロックインサーモグラフィーによる熱イメージング用試料には、ワイヤー形状の組成傾斜膜を用いた。ス ピンペルチェ効果による温度変調の空間分布を調べることで、Cu-Ir (Cu-Bi) 合金におけるスピンホール効果 の Ir (Bi) 濃度依存性を一括評価したところ、Cu-Ir 合金では電流密度あたりの温度変調振幅が xr = 25 at.%近 傍で極大を示し、この組成領域にてスピンホール効果の増大が示唆された。一方、非平衡 Cu-Bi 合金薄膜で はスピンペルチェ効果による温度変調が小さく、大きなスピンホール効果は観測されなかった。

上記の温度変調が増大した非平衡 Cu-Ir 合金におけるスピンホール角を定量評価するため、Al₂O₃(0001) 基板上に成膜した Cu₇₆Ir₂₄/CoFeB 二層膜からなるホールバー素子を作製し、ホール電圧の高調波測定を行ったところ、 $\alpha_{SH} = 6.29 \pm 0.19$ % という値が得られた。この α_{SH} の値は Pt の α_{SH} 7)と匹敵する大きさであり、非平衡 Cu-Ir 合金がスピンホール材料の候補になることが示された⁸。

参考文献

Y. Niimi et al., Phys. Rev. Lett. 106, 126601 (2011). 2) M. Yamanouchi et al., Appl. Phys. Lett. 102, 212408 (2013). 3)
J. Cramer et al., Nano Lett. 18, 1064 (2018). 4) H. Masuda et al., Phys. Rev. B 101, 224413 (2020). 5) Y. Niimi et al., Phys. Rev. Lett. 109, 156602 (2012). 6) K. Uchida et al., Sci. Rep. 8, 16067 (2018). 7) L. Liu et al., Phys. Rev. Lett. 106, 036601 (2011). 8) H. Masuda et al, Comms. Mater. (accepted).

Co₂MnGa 薄膜におけるスピン偏極ワイル分散と

巨大異常ネルンスト効果の観測

角田一樹¹、桜庭裕弥²、増田啓介²、河野嵩³、鹿子木将明³、後藤一希²、 Weinan Zhou²、宮本幸治⁴、三浦良雄²、奥田太一⁴、木村昭夫³ (¹原子力機構、²物材機構、³広大院理、⁴広大放射光) Observation of spin-polarized Weyl cones and giant anomalous Nernst effect in Co₂MnGa films

K. Sumida¹, Y. Sakuraba², K. Masuda², T. Kono³, M. Kakoki³, K. Goto²,

W. Zhou², K. Miyamoto⁴, Y. Miura², T. Okuda⁴, and A. Kimura³

(¹JAEA, ²NIMS, ³Hiroshima Univ., ⁴HiSOR)

背景

異常ネルンスト効果は強磁性体に熱流を流した際に、温度勾配と磁化の外積方向に電場が生じる現象であ る。これまで、異常ネルンスト効果による熱電能は磁化の大きさに比例すると考えられてきたが、近年、反 強磁性体を含むいくつかの磁性材料でこの経験則が破綻していることが明らかになってきた[1]。特に強磁性 ホイスラー合金 Co₂MnGa の室温における熱電能は約 6.0 μV/K に達しており、Fe などの典型的な強磁性体の 約 10 倍の大きさに匹敵する[2]。このような巨大異常ネルンスト効果には、フェルミ準位近傍のトポロジカル に非自明な電子構造が重要な役割を果たしていると考えられている。しかし、異常ネルンスト効果と電子構 造の正確な対応関係は未だ明らかになっていない。また、Co₂MnGa の熱電能は薄膜では 3.0 μV/K 程度しか実 現されていない点も大きな問題である[3]。本研究では、組成比を緻密に制御した Co₂MnGa 薄膜に着目し、異 常ネルンスト効果による熱電能と電子構造の対応関係の解明を目的とした。

実験条件

組成比を制御した Co₂MnGa 薄膜は Co, Mn, Co₂MnGa ターゲットを利用したコスパッタ法で MgO 基板上に 作成した。試料表面の汚染を防ぐため、薄膜試料をポータブルチャンバーによって光電子分光装置に大気に 晒すことなく輸送し、[100]方向に磁化した状態でスピン・角度分解光電子分光を行った。また、実験結果と の比較のため、L2₁規則相における Co₂MnGa の第一原理計算も行った。

実験結果

Co₂MnGa 薄膜の異常ホール、ネルンスト伝導度を測定 したところ、価電子数を増やすに従って系統的に増加する ことが明らかとなった(図1(a,b))。観測された熱電能は最 大で 6.2 µV/K に達し、強磁性体薄膜としての最高値を記 録した。また、残留磁化を利用したゼロ磁場での異常ネル ンスト効果の観測にも成功した。最も高い異常ホール、ネ ルンスト伝導度を観測した試料に対してスピン・角度分解 光電子分光を行ったところ、フェルミ準位近傍にスピン偏 極した複数のワイルコーンが存在していることが明らか となった(図1(c))。第一原理計算(図1(d))との比較によ り、これらのワイルコーンが波数空間上で巨大な仮想磁場 (ベリー曲率)を生み出す源となっていることを突き止 め、電子構造と熱電能の対応関係を明らかにした[4]。

図1(a,b) Co₂MnGa 薄膜の異常ホール、ネルンスト伝導度 の価電子数依存性。(c,d) 光電子分光および第一原理計算 によって求めたフェルミ準位近傍のバンド分散。

参考文献

[1] M. Ikhlas et al., Nat. Phys. 13, 1085 (2017). [2] A. Sakai et al., Nat. Phys. 14, 1119 (2018).

[3] G.-H. Park et al., Phys. Rev. B 101, 060406(R) (2020). [4] K. Sumida et al., Comms. Mater., in press.