Prospect of 1-12 based permanent magnets

~ Demonstration of high coercivity in thin films and current status of 1-12 bulk magnet~

¹Y.K. Takahashi, ¹D. Ogawa, ¹H. Sepehri-Amin, ²T. Shima, ¹T. Ohkubo, ¹S. Hirosawa, ¹K. Hono (¹NIMS, ²Tohoku Gakuin Univ.)

SmFe₁₂-based compound is one of the candidates for next generation permanent magnet due to its high saturation magnetization ($\mu_0 M_s$), high anisotropy (*K*) and high Curie temperature (T_c) [1]. Since SmFe₁₂-based compound is

unstable at RT, the addition of the phase stabilizing element is necessary, which causes large reduction in magnetization. Recently, Kuno *et al.*[2] reported high $\mu_0 M_s$ by reducing Ti composition which is one of the phase stabilizing elements and substituting Fe and Sm with Co and Zr, respectively. Later, Hirayama *et al.* [3] prepared the single crystal Sm(Fe_{0.8}Co_{0.2})₁₂ film by sputtering and demonstrated high magnetic properties of $\mu_0 M_s$ =1.78 T, H_a =12 T and T_c =859 K, which are superior to those of Nd₂Fe₁₄B. Even in the working temperature of the motor in electric vehicle (EV) or hybrid EV (HEV), these properties are higher than those of Nd₂Fe₁₄B. One drawback in Sm(Fe_{0.8}Co_{0.2})₁₂ compound is too low coercivity ($\mu_0 H_c$) for the permanent magnet application. In order to demonstrate the high $\mu_0 H_c$, we have controlled the microstructure by the diffusion process [4] and cosputtering of the nonmagnetic elements [5].

Fig. 1 shows $\mu_0 H_c$ of the diffusion processed Sm(Fe_{0.8}Co_{0.2})₁₂ film as a function of annealing temperature. The optimum annealing temperature ranges from 623 K to 723 K. Cu, Cu-Ga, and Mg-Zn are the effective infiltration sources for igh $\mu_0 H_c$ corresponding to 0.78 T, 0.84 T, and 0.87 T, respectively. The microstructure of Cu-Ga diffused sample shows that the Cu and Ga are diffused into the grain boundary of Sm(Fe_{0.8}Co_{0.2})₁₂ grains. However, Cu and Ga do not form uniform intergranular phase. It could be the reason for marginal increase of $\mu_0 H_c$. B containing sample shows the highest $\mu_0 H_c$ of 1.2 T. As shown in the in-plane and cross-sectional TEM images of the inset, it forms well-separated nanogranular microstructure with about 40 nm diameter of Sm(Fe_{0.8}Co_{0.2})₁₂ grains perfectly enveloped by the B-rich amorphous grain boundary phase. Because of the magnetization and anisotropy difference between Sm(Fe_{0.8}Co_{0.2})₁₂ grains and grain boundary phase, the highest $\mu_0 H_c$ of 1.2T was achieved. Fig. 2 shows the temperature dependence of $\mu_0 H_c$ in the Sm(Fe_{0.8}Co_{0.2})₁₂ films with high $\mu_0 H_c$. Those in the commercial Nd-Fe-B magnets are shown for the

Fig. 1 Change of $\mu_0 H_c$ of the diffusion processed Sm(Fe_{0.8}Co_{0.2})₁₂ film as a function of annealing temperature. $\mu_0 H_c$ of the cosputtered Sm(Fe_{0.8}Co_{0.2})₁₂-B film is also shown.

Fig. 2 Temperature dependence of $\mu_0 H_c$ in Nd-Fe-B magnets, Sm(Fe_{0.8}Co_{0.2})₁₂ film with Cu and Cu-Ga diffusion.

comparison. Sm(Fe_{0.8}Co_{0.2})₁₂ films with high $\mu_0 H_c$ have small absolute value of temperature coefficient of coercivity ($\beta \sim -0.2 \ \%/K$) due to the high T_c . These results indicate that Sm(Fe_{0.8}Co_{0.2})₁₂ could be a superior compound for permanent magnet application compared to Nd₂Fe₁₄B magnet if optimum microstructure can be achieved in bulk with high $\mu_0 H_c$. In the talk, I would review current status of the investigation for 1-12 bulk magnet.

(1)K. Ohashi et al., IEEE Trans Magn.23, 3101 (1987).(2)T. Kuno et al., AIP Adv. 6 025221 (2016). (3) Y. Hirayama et al, Scr. Mater.138, 62 (2017). (4) D. Ogawa et al, Scr. Mater164, 140 (2019). (5) H. Sepehri-Amin et al, Acta Mater194, 337 (2020).