Investigation of negative spin-polarization in Fe_xCr_{1-x} thin films for spin-torque oscillator

Nagarjuna Asam¹, Tomoya Nakatani¹, Hossein Sepehri-Amin¹, Yohei Kota², Yuya Sakuraba¹, Kazuhiro Hono¹

¹National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305–0047, Japan

²National Institute of Technology, Fukushima Collage, Iwaki, Fukushima 970-8034, Japan

Magnetic materials having negative spin polarization have recently attracted attention because of potential application¹⁾ in the spin torque oscillator (STO) for Microwave assisted magnetic recording (MAMR). FeCr is one of the candidate materials showing negative spin polarization. Experimentally, Vouille *et al.* reported the spin polarization of Fe₇₀Cr₃₀ at low temperature (4.2 K) to be -0.28⁴⁾. Shimizu et al. have already demonstrated¹⁾ the reduction of threshold current density for the spin transfer torque (STT) induced magnetization precession using FeCr as a spin injection layer (SIL) of STO. However, for practical application, fundamental study of this material is necessary to answer the following several questions. ; What is the optimal composition of Fe_xCr_{1-x} for maximum MR ratio? How much is the theoretical bulk spin polarization (β) and the experimental β at room temperature? To answer these questions, we performed systematic study on the Fe_xCr_{1-x} film and those-based CPP-GMR devices.

The electronic conductivity of majority and minority spin electrons in Fe_xCr_{1-x} was calculated based on Kubo-Greenwood formula employing a method similar to the one previously reported for CoFe³). Our result shows very large negative spin-polarization ($\beta < -0.8$) for Fe_{1-x}Cr_x for x > 0.1, with progressively increasing β as x increases. Experimentally, we made a series of several current perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices as shown in figure 1(a) using Fe_xCr_{1-x}(t_{FeCr}) as the spin injection layer where x is chosen among {x=0.2, 0.3 and 0.4}, t_{FeCr} (thickness of Fe_xCr_{1-x} layer) is varied from 2 nm to 15 nm. For each thin film structure, we microfabricated pillar shaped CPP-GMR devices using as-deposited films and performed electrical characterization. Figure 1(b) shows an example of negative sign of GMR arising from the negative spin polarization of Fe_xCr_{1-x}. Our study showed that the best composition of Fe_xCr₁.

x is x=0.4 for maximum negative MR ratio. We also estimated the bulk spin-polarization (β) of Fe₇₀Cr₃₀ to be -0.13, which is much lower than the theoretical value. The possible reason for large deviation of experimental ß from theoretical value examined was by microstructure and element-resolved analysis for the Fe_xCr_{1-x} films.

References:

- Shimizu M et al. The 39th Annual conf. on Magnetics in Japan, Nagoya, 2015, 10pE-3.
- Barnaś, J., et al. Phys. Rev. B Condens. Matter Mater. Phys. 72, 024426 (2005).

Figure 1. Negative sign of magnetoresistance (MR) in $Fe_{1-x}Cr_x(t_{FeCr})/Cu(3 \text{ nm})/Fe_{68}Co_{32}(5 \text{ nm})$ (a) Film structure (b) MR curves showing negative MR ratio for Cr buffer layer and t_{FeCr} =5nm

- 3. Kota, Y., et. al., J. Appl. Phys. 105, 07B716 (2009).
- 4. Vouille, C., et al. Phys. Rev. B Condens. Matter Mater. Phys. 60, 6710–6722 (1999).