M 元素置換型ゲーサイトを出発原料とした還元窒化プロセスによる α"-(Fe, M)₁₆N₂ナノ粒子(M=Al, V, Cr, Mn, Ni)の作製

[°]飛世 正博, 斉藤 伸 (東北大学)

Synthesis of α "-(Fe, M)₁₆N₂ nanoparticles obtained by hydrogen reduction and subsequent nitrogenation

starting from α -(Fe, M)OOH (M= Al, V, Cr, Mn, Ni)

Masahiro Tobise, Shin Saito (Tohoku University)

<u>**はじめに</u>** 窒素侵入型化合物 a"-Fe₁₆N₂ は高い飽和磁化 1680 emu/cm³を有し、一軸結晶磁気異方性エネ ルギー 9.6×10⁶ erg/cm³を示すことからセミハード磁性材料として分類され、ギャップ磁石材料としての可能性を 有している¹⁾. 講演者らは水酸化鉄や酸化鉄を還元して得た Fe 粒子を窒化し a"-Fe₁₆N₂粒子を合成するプロセ スにおいて、a"-Fe₁₆N₂相の生成率を高めるために出発原料やプロセス条件を検討するとともに、a"-Fe₁₆N₂粒子 およびその集合体の形態と磁気特性との関係について一連の研究を行っている²⁾³⁾. 今回はより高い結晶磁気 異方性の発現を目指して Fe の一部を M 元素 (M= Al, V, Cr, Mn, Ni) で置換した a"-(Fe, M)₁₆N₂ナノ粒子の合 成を検討した.</u>

<u>実験方法</u> 出発原料にはα-(Fe_{0.95}M_{0.05})OOHナノ粒子を用いた.出発原料を300~500℃で4h水素中還元 し引き続き150~180℃で5hアンモニア中窒化を行った.生成相はX線回折,磁気特性はVSMで評価した.

<u>実験結果</u> これまで α -(Fe_{0.95}M_{0.05})OOH ナノ粒子を還元・窒化処理し α "-(Fe, M)₁₆N₂相の合成を試みた結果, M=Mn, Al の場合に比較的高い保磁力が得られた. Fig. 1 に出発原料の TEM 像を示した. α -FeOOH の形状 はスピンドル状であるのに対して Mn 置換系は棒状, Al 置換系は球状であり, M 元素置換により形状が変化し た. Fig. 2 にこれらを還元・窒化処理した後のナノ粒子集合体の保磁力 H_c を還元温度および窒化温度に対して プロットした. また α "-(Fe, M)₁₆N₂相が生成した領域を影で示した. Mn 置換系は 400 ℃以上の温度で Fe(Mn)

に還元され,窒化温度が160 °Cのときのみ α "-(Fe, Mn)₁₆N₂相が生成した.窒化時間を16hまで延ば したところ H_c は480 Oeから970 Oeまで高くなった. 一方 Al 置換系は340 °C以上で Fe(Al)に還元され 窒化温度155~170 °Cの広い範囲で α "-(Fe,Al)₁₆N₂ が生成した.さらに窒化温度160 °Cにおいて窒化 時間を16hまで延ばしたところ H_c は1390 Oeから 2180 Oeまで高くなった.窒化温度を変えるより も窒化時間を長くすることの方が H_c 向上に有効

であった. このように M 元素によって a"相が生 成する還元・窒化温度が 大きく変化した. 今後回 転ヒステリシス損失法を 用いて結晶磁気異方性 を評価し a"-(Fe, M)₁₆N₂ ナノ粒子集合体の磁気 特性との関係について 検討した結果を報告す る.

Fig. 1 TEM images of nanoparticles as starting materials.

Fig. 2 Plots of H_c of nanoparticles as a function of reduction temp. and nitrogenation temp. for several starting materials.

<u>参考文献</u> 1) R. Skomski et al., *Scripta Mater.*, **112**, 3 (2016). 2) M. Tobise et al., *J. Magn. Soc. Jpn.*, **41**, 58 (2017). 3) M. Tobise et al., AIP Adv., **JMI2019**, 035233 (2019).