Fabrication of L₂₁-ordered Co₂TiSi Heusler Alloy Epitaxial Films

M. Liu, M. Oogane, M. Tsunoda, Y. Ando

Tohoku University, Sendai 980-8579, Japan

Center for Science and Innovation in Spintronics (Core Research Cluster) Organization for Advanced Studies, Tohoku University, Sendai 980-8577, Japan

Center for Spintronics Research Network, Tohoku University, Sendai 980-8577, Japan

Recently, Co₂TiSi full-Heusler alloy is theoretically predicted to be the Weyl semimetal that the Weyl points exist in wave number space. ¹) Because of the existence of the Weyl points, a large anomalous Hall effect can be observed in the Co₂TiSi full-Heusler alloy. In addition, Co₂TiSi has a large spin polarization due to its half-metallic property. ²) Therefore, Co₂TiSi has attracted much attention as a potential candidate for spintronics applications. ³) In this research, we fabricated Co₂TiSi thin films epitaxially grown on MgO substrates and investigated their anomalous Hall effect.

The ultra-high vacuum magnetron sputtering method was used for the preparation of the thin films. The structure of the sample was MgO (001) sub. / Co₂TiSi (50 nm) / Ta (5 nm). For the deposition of Co₂TiSi films, the Ar gas pressure was 0.07 to 0.15 Pa, and the substrate heating temperature (T_s) and the post annealing temperature (T_a) were varied in the range of 300 to 700°C. The sputtering power (W_T) was also changed from 40 W to 100 W. We characterized the crystal structure by XRD, the magnetic property by SQUID, and the anomalous Hall effect by PPMS.

Fig. 1 shows the Ar gas pressure p dependence of L₂₁ order parameters for Co₂TiSi thin films annealed at 700°C. In the condition of p = 0.11 and 0.15 Pa, a high L₂₁ order parameters > 80% was successfully obtained. Fig. 2 shows the measurement temperature dependence of the saturation magnetization in the samples with p = 0.07, 0.11, and 0.15 Pa (T_a = 700°C). The magnitude of saturation magnetization was close to the bulk value (213 emu/cc) at low temperature regardless of the Ar gas pressure. ⁴) However, the anomalous Hall conductivity of sample was 20 - 30 S/cm at low temperature and it was much smaller than the expected value. We infer that the Fermi level for the prepared Co₂TiSi is not cross the Weyl points and further control of the film composition is needed to observe the large anomalous Hall effect.

Reference