VN 下地層上に形成した FeCo(001)単結晶膜の磁歪特性

大竹充¹・芹澤伽那^{1,2}・川井哲郎¹・二本正昭²・桐野文良³・稲葉信幸⁴ (¹横浜国大,²中央大,³東京藝大,⁴山形大)

Magnetostrictive Property of FeCo(001) Single-Crystal Film Formed on VN Underlayer Mitsuru Ohtake¹, Kana Serizawa^{1,2}, Tetsuroh Kawai¹, Masaaki Futamoto², Fumiyoshi Kirino³, Nobuyuki Inaba⁴ (¹Yokohama Nat. Univ., ²Chuo Univ., ³Tokyo Univ. Arts, ⁴Yamagata Univ.)

はじめに 大きな磁歪を示す軟磁性材料は、センサやアクチュエーター、振動発電デバイス等への応用に向けて研究されている. bcc 構造を持つ Fe-Co 合金は代表的な軟磁性材料であり、組成や形成条件により 10⁻⁴ オーダーの大きな磁歪を示すことから¹⁻³、これらの応用に向けて注目されつつある.最近、我々は、材料基 礎物性を調べることを目的に、MgO(001)基板上に bcc-Fe_{100-x}Co_x(001)単結晶膜($x = 0 \sim 50$ at. %)を基板温度 300 °C で形成し、Co 組成 $x \in 0$ から 50 at. %に増加させると、 λ_{100} は+274×10⁻⁶、 λ_{111} は+78×10⁻⁶ まで増加する ことを報告した⁴⁾.形成基板温度や熱処理後の冷却過程によっても、結晶特性が変化し、磁歪も増加する可能性がある.しかしながら、高基板温度で膜形成を行うと、一般に基板上での薄膜材料原子の表面拡散が促進され、起伏の大きな膜が形成され、磁歪特性を評価することができない.本研究では、MgO と同じ結晶構造と同程度の格子定数を持ち、MgO に比べて表面エネルギーの大きな VN を下地層材料として用いることにより、高基板温度においても、平坦な表面を持つ Fe₅₀Co₅₀ 合金膜の形成を実現した.そして、基板温度およ び基板加熱後の冷却過程が磁歪特性に及ぼす影響について調べた.

実験方法 膜形成には超高真空 RF マグネトロン・スパッタリング装置を用いた. MgO(001)基板上に 600 °C の基板温度で 10 nm 厚の VN(001)単結晶下地層を形成し、その後、室温から 600 °C の間の一定基板温度で 100 nm 厚の Fe₅₀Co₅₀ 膜を形成した. 構造評価には RHEED および XRD,表面形態観察には AFM,磁化曲線測定 には VSM を用いた. 磁歪は、0 から 1.2 kOe の回転磁界中に片持ち梁の状態で試料を配置し、そのそりをレーザー変位計で測定し、 $\Delta l/l = \Delta S t_s^2 E_s (1+v_s) / 3L^2 t_f E_f (1-v_s)$ の関係式を用いることにより算出した. ここで、 $\Delta l/l$ は歪、 ΔS は片持ち梁のそり量、L は 2 つのレーザーポイント間の距離、t は厚さ、E はヤング率、v はポアソン比、添え字のs およびf はそれぞれ基板および膜のパラメータであることを表している.

実験結果 室温から 600 °C の全ての基板温 度において, FeCo(001)[110]_{bcc} || VN(001)[100] の結晶方位関係で FeCo(001)単結晶膜がエピ タキシャル成長した.また,いずれの膜にお いても,平坦な表面が得られた.Fig.1(a)お よび(b)に,それぞれ, λ_{100} および λ_{111} の基板 温度依存性を示す.基板温度を室温から 600 °C に上昇させると, λ_{100} は+261×10⁻⁶から +299×10⁻⁶, λ_{111} は-16×10⁻⁶から+117×10⁻⁶まで 増加しており,高基板温度を用いることによ り,磁歪を増加させられることが分かった. 当日は,基板加熱後の冷却過程が磁歪特性に 及ぼす影響についても報告する.

Fig. 1 Substrate temperature dependences of magnetostriction coefficients, (a) λ_{100} and (b) λ_{111} , of FeCo(001) single-crystal film formed on VN underlayer.

- 1) H. M. A. Urquhart, K. Azumi, and J. E. Goldman: DTIC Tech. Rep., no. AD0018771 (1953).
- 2) R. C. Hall: J. Appl. Phys., 30, 816 (1959).
- D. Hunter, W. Osborn, K. Wang, N. Kazantseva, J. Hattrick-Simpers, R. Suchoski, R. Takahashi, M. L. Young, A. Mehta, L. A. Bendersky, S. E. Lofland, M. Wuttig, and I. Takeuchi: *Nat. Commun.*, 2, 518 (2011).
- 4) K. Serizawa, M. Ohtake, T. Kawai, M. Futamoto, F. Kirino, and N. Inaba: J. Magn. Soc. Jpn., 43, 50 (2019).