Snell’s law for isotropically propagating spin wave

Tian Li\(^1\), Takuya Taniguchi\(^1,2\), Yoichi Shiota\(^1\), Takahiro Moriyama\(^1\), and Teruo Ono\(^1,3\)†

\(^1\)Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
\(^2\)Department of Physics, Technical University of Munich, Munich 85748, Germany
\(^3\)Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka Univ., Osaka 560-8531, Japan

Introduction

Control of spin wave (SW) propagation is one of crucial tasks in magnonics [1]. As one of the important properties of the propagation, refraction of magnetostatic surface spin wave (MSSW) has been investigated [2]. However, anisotropic Snell’s law of MSSW requires complex calculation and it is not easy to apply techniques grown in optics. Regarding the dispersion relation of SW considering exchange interaction and dipole-dipole interaction [3],

\[
\omega^2 = (\omega_H + \alpha \omega_M k^2) \left[\omega_H + \alpha \omega_M k^2 + \omega_M \left(1 - \frac{1 - e^{-\frac{k d}{\alpha k d}}}{kd} \right) \right]
\]

(1)

SWs propagating in-plane with out-of-plane magnetization propagate isotropically. Furthermore, Eq.1 describes the dispersion relation of magnetostatic forward volume wave (MSFVW) when \(\alpha \omega_M k^2 = 0 \) is assumed. In this study, we investigated Snell’s law for both MSFVW and isotropically propagating dipole-exchange SW.

Simulation condition

The micromagnetic simulation is performed utilizing mumax3[4]. We use material parameters of yttrium iron garnet (YIG). In the simulation, samples are shaped as Fig.1. The black and white areas are respectively the thicker and thinner regions. And the thickness step, the boundary between two regions, is tilted with the angle \(\theta_1 \). The rf magnetic field is applied at the antenna. MSFVW is excited in the thicker(800 nm) region, passes through the thickness step and propagates in the thinner(400 nm) region.

Results

The incident wave is refracted by following Snell’s law \(\frac{\sin \theta_1}{\sin \theta_2} = \frac{k_2}{k_1} \). The wave number is independent of the direction of propagation due to the isotropic dispersion property. For MSFVW, a wavenumber is varied in order to keep \(kd \) constant when it passes through a thickness step. Hence, the Snell’s law for MSFVW is independent of frequency (Fig.2).

References