Co₂Fe(Ga,Ge)を用いた電流面直型スピンバルブ素子の 磁気抵抗特性に及ぼす Co₂Fe(Ga,Ge)薄膜の Ge 組成の影響

近惣祐輝¹,谷本哲盛¹,井上将希¹,犬伏和海²,中田勝之²,植村哲也¹ (¹北海道大学,²TDK 株式会社)

Influence of Ge composition in Co₂Fe(Ga,Ge) films on magnetoresistance characteristics of Co₂Fe(Ga,Ge)-based current-perpendicular-to-plane spin valves

Y. Chikaso¹, T. Tanimoto¹, M. Inoue¹, K. Inubushi², K. Nakada², and T. Uemura¹ (¹Hokkaido University, ²TDK Corporation)

1. はじめに

ハーフメタル材料の一種である Co 基ホイスラー合金は、そのスピン偏極率の高さから、電流面直型巨大磁 気抵抗(CPP-GMR)素子に用いた際に大きな磁気抵抗(MR)比が期待されるため、現在、盛んに研究が進められ ている¹⁻⁵⁾.最近、我々は Co₂MnSi(CMS)を用いた CPP-GMR 素子において、Mn 組成を化学量論組成よりも過 剰にすることで、CMS のハーフメタル特性を低下させる Co_{Mn} アンチサイトが抑制され、MR 比が向上するこ とを実証した⁴⁾. このことから、Co 基ホイスラー合金のハーフメタル特性の向上には、組成制御が有効であ ると考えられる.最近、Co₂Fe(Ga,Ge)(CFGG)を用いた CPP-GMR 素子において比較的高い MR 比が報告され たが⁵⁾、CFGG の組成制御に対する MR 特性への影響は明らかになっていない.本研究の目的は、CFGG を用 いた CPP-GMR 素子の MR 特性に対する組成制御の影響を明らかにすることである.

2. 実験方法

CFGG 電極と Ag spacer を有する保磁力差型 CPP-GMR 素子において, CFGG の Ge 組成を系統的に変化させた素子を作製した. 層構造は MgO(001)単結晶基板上に, MgO buffer (10 nm)/Co₅₀Fe₅₀ seed (10)/Ag buffer (100)/CFGG lower electrode (10)/Ag spacer (5)/CFGG upper electrode (8)/Ru cap (5)の順とした. 尚, MR 比の向上を図るため, Ag spacer と上下 CFGG 電極間に厚さ 0.21 nm の NiAl 極薄層を挿入した素子も作製した⁵⁾. CFGG 電極の組成制御は CFGG ターゲットと Ge ターゲットの同時スパッタ法により行い, Co₂Fe_{1.03}Ga_{0.41}Ge_aにおいて $\alpha = 0.24$ から 1.06 まで変化させた. CFGG 電極の結晶性向上のため,上部 CFGG 電極を室温にて堆積後, in-situ で 550℃のアニールを行った.上記の層構造に対して,微細加工を施し, CPP-GMR 素子を作製した.素子の MR 特性は,室温において直流 4 端子法により測定した. MR 比は($R_{AP}-R_{P}$)/ R_{P} により定義した.ここで, $R_{AP(P)}$ は磁化反平行(平行)時の素子抵抗である.

3. 結果および考察

Fig. 1 に作製した CPP-GMR 素子の室温における MR 比の Ge 組成 α に対する依存性を示す. α の増加に対し, MR 比はほぼ単調に上昇し, NiAl 極薄層を持つ素子において, $\alpha = 1.06$ にて最大 55.6%の MR 比が得られた. これは, Ge rich 組成による Co アンチサイトの抑制等が原因と考えられる. 以上の結果より, Ge-rich CFGG の CPP-GMR 素子における 有用性を実証した.

参考文献

1) Y. Sakuraba et al., Appl. Phys. Lett. 101, 252408 (2012).

- 2) H. Narisawa et al., Appl. Phys. Express 8, 063008 (2015).
- 3) Y. Du et al., Appl. Phys. Lett. 107, 112405 (2015).
- 4) M. Inoue et al., Appl. Phys. Lett. 111, 082403 (2017).
- 5) J. W. Jung et al., Appl. Phys. Lett. 108, 102408 (2016).

Fig. 1. MR ratio at 290 K for CFGG/NiAl/Ag/NiAl/CFGG CPP-GMR devices as a function of Ge composition α in Co₂Fe_{1.03}Ga_{0.41}Ge_{α} electrode with NiAl thickness of 0 and 0.21 nm.