Potential of RFe_z (z = 9-12) alloys as permanent magnet materials

S. Sakurada

Corporate Research & Development Center, Research & Development Division, Toshiba Corporation

 RFe_z compounds (R = rare earth element, z = 9-12) crystalized in the ThMn₁₂ structure [1] or the TbCu₇ structure [2] have been investigated as promising candidates for next-generation high-performance permanent magnet materials because they can contain large amounts of iron. Some of these compounds are reported to exhibit intrinsic magnetic properties of exceeding that of Nd₂Fe₁₄B [3,4]. We have focused on the crystal phases appearing in such iron-rich R-Fe alloys, their phase stability, and the magnetic properties of these compounds for the last 30 years, and mainly obtained the following results and findings.

- (1) The atomic radius of the element occupying the rare-earth site is an important factor to stabilize the $ThMn_{12}$ structure in $RFe_{10}Si_2$ system. The $ThMn_{12}$ phase was found in the system in which the individual rare-earth atomic radius were smaller than those of neodymium in $RFe_{10}Si_2$. In the $(Nd,Zr)Fe_{10}Si_2$ system, zirconium occupies the neodymium site and facilitates the formation of the $ThMn_{12}$ phase owing to the decrease in the atomic radius of the neodymium site [5].
- (2) In $(Nd,Zr)Fe_{12-x}Si_x$, the ThMn₁₂ phase was not observed at $x \le 1$, and the Th₂Ni₁₇ phase or the Th₂Zn₁₇ phase were observed together with α -Fe. However, in $(R,Zr)(Fe,Co)_{10}$ rapidly quenched alloys $(R=Nd, Sm, V_s = 40m/s)$, almost a single phase with the TbCu₇ structure was obtained. The presence of zirconium makes it possible to realize a TbCu₇ structure with a high lattice constant ratio c/a of more than 0.87. In the structure, it is believed that a greater number of the dumbbell arrangements of iron atoms exist. $(Sm,Zr)(Fe,Co)_{10}N_x$ prepared by rapid quenching, annealing, and nitogenation exhibited a high saturation magnetization (μ_0M_s) of 1.70 T and an anisotropy field (μ_0H_a) of 7.7 T [4].
- (3) We have developed isotropic magnet powder with the composition of $(Sm,Zr)(Fe,Co)_zB_{0.1}N_x$ (z = 9-10). A small addition of boron is effective for forming the amorphous phase in the rapidly quenched alloys and for obtaining uniform and fine grains of the TbCu₇ phases after annealing. The magnetic properties of these powders are $B_r = 1.00-1.07$ T, $H_{cJ} = 640-880$ kA/m, $(BH)_{max} = 160-180$ kJ/m³. Isotropic bonded magnets fabricated using such powder show highest $(BH)_{max} = 123$ kJ/m³ [6] and are currently commercialized and used in various motors.
- (4) Compounds containing a greater number of the dumbbell arrangements of iron atoms such as RFe₁₂ having the ThMn₁₂ structure and RFe₉₋₁₂ having the TbCu₇ structure tend to be appeared in alloys having the smaller atomic radius of the rare-earth site. However, use of heavy-rare-earth lowers the saturation magnetization. Therefore, it is important to realize a situation similar to the heavy-rare-earth compounds by the substitution of Nd or Sm with the element having a smaller atomic radius such as Zr.

In this presentation, I also mention recent topics on the intrinsic magnetic properties of RFe₉₋₁₂ compounds and attempts to improve the coercivity, as well as some interesting issues that have not been solved for these compounds.

<u>Reference</u>

- 1) K. Ohashi et al., IEEE Trans. Magn. 23 (1987) 3101–3103.
- 2) M. Katter et al., J. Appl. Phys. 70 (1991) 3188-3196.
- 3) Y. Hirayama et al., Scr. Mater. 138 (2017) 62–65.
- 4) S. Sakurada et al., J. Appl. Phys. 79 (1996) 4611–4613.
- 5) S. Sakurada et al., J. Alloys Compd. 187 (1992) 67–71.
- 6) S. Sakurada et al., Proc. 16th Int. Workshop on RE Magnets and Their Applications (2000) 719-726.