Improved coercivity and squareness in bulk hot-deformed magnets by two-step grain boundary diffusion process

Xin Tang,¹ J. Li,¹ H. Sepehri-Amin,¹ T. Ohkubo,¹ K. Hioki,² A. Hattori² and K. Hono¹ ¹Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan ²Daido Corporate Research & Development Center, Daido Steel Co., Ltd.

In order to use Nd-Fe-B based permanent magnets for the traction motor of hybrid (electric) vehicles, a coercivity of 0.8 T is required at 160 °C to avoid their thermal demagnetization during operation. To meet this requirement, grain boundary diffusion of RE-based eutectic alloys is employed to improve the coercivity in the hot-deformed magnets. ¹⁾ Recently, Li *et al.* reported a coercivity of ~2.57 T with remanence of 1.38 T in a 2-mm-thick hot-deformed magnet by the grain boundary diffusion of Tb-Nd-Cu alloy. ²⁾ However, such high performance was demonstrated only using a small piece of samples with a thickness of ~2 mm and a question is whether or not we can apply the process to large bulk samples. Previous reports on conventional Dy-vapor diffusion process in micron-grain sized Nd-Fe-B sintered magnets has shown that the limited diffusion depth results in a poor squareness of demagnetization curves. ³⁾ In this work, we investigated the method to improve the squareness of demagnetization curves of Nd-HRE-Cu eutectic-diffusion processed 5.6-mm-thick hot-deformed magnets.

The hot-deformed Nd-Fe-B-based magnets with composition of Fe_{67.1}Pr_{6.7}Nd_{21.2}Co_{3.5}Ga_{0.5}B₁ (wt.%) were used as starting materials. The samples of $\times 7 \times 5.6$ (c-axis) mm³ in size were covered by the 12 wt.% Tb₂₀Dy₁₀Nd₄₀Cu₃₀ ribbons (with respect to mass of hot-deformed magnet) followed by annealing at 750°C for 1.5 h and post-annealing at 650°C for 9h, which is called as "one-step diffusion process". In comparison, the two-step diffusion process was carried out as follows: the initial samples were covered by the 10 wt.% Tb₂₀Dy₁₀Nd₄₀Cu₃₀ ribbons (with respect to the mass of hot-deformed magnet) followed by annealing at 750°C for 1.5 h. Thereafter, the surface of the magnet was polished and the magnet was again covered by 6 wt.% of Nd₈₀Cu₂₀ alloy ribbons followed by heat-treatment at 650°C for 9 h. The magnetic properties were studied by pulse BH-tracer.

Fig. 1 shows the demagnetization curves of the one-step and the two-step diffusion processed samples. The coercivity is improved from ~1.14 T in the as-deformed sample to ~2.38 T while remanence degrades from ~1.49 T to ~1.28 T after one-step diffusion procession. In contrast, the coercivity is enhanced to 2.43 T with remanent magnetization reduction to ~1.29 T by the two-step diffusion process. The squareness factor of demagnetization curve is defined as $\mu_0 H_k/\mu_0 H_c$, where $\mu_0 H_k$ is the absolute value of external field when the magnetization equals to 90% of remanent magnetization ($\mu_0 M_r$) and $\mu_0 H_c$ is the coercivity of the sample. The squareness factor was calculated to be ~0.83 for the one-step diffusion processed sample, which is improved to ~0.91 after the two-step diffusion. The origin of the obtained magnetic properties will be discussed based on detailed microstructure characterization.

Reference

- 1) H. Sepehri-Amin, et al., Acta Mater. 61 (2013) 6622-6634.
- 2) J. Li, et al., Acta Mater. 161 (2018) 171-181.
- 3) K. Löewe, et al., Acta Materialia 83 (2015) 248-25.

Fig. 1 Demagnetization curves of hot-deformed magnets and diffusion-processed magnets