Powder neutron diffraction study for magnetism of rare-earth in (Nd,Ce,La)₂Fe₁₄B

Takafumi Hawai¹, Masao Yano², Tetsuya Shoji², James Hester³, Kanta Ono¹ (¹KEK, ²Toyota Motor Corp, ³ANSTO)

Introduction

To reduce expensive Neodymium in rare-earth magnets Nd₂Fe₁₄B without decrease of magnetic properties, cheap Cerium is paid attention. In general, the Ce atom is in non-magnetic Ce⁴⁺ state. However, when the magnetic Ce³⁺ state is stable, the Ce should work as a substitution for Nd. Previous research reported that the larger ionic radii rare-earth prefer the larger cell volume [1]. The magnetic Ce³⁺ state has larger atomic radii (1.15 Å) than that of Ce⁴⁺ state (1.01 Å) [2]. Therefore, the La (1.17 Å) is doped as a spacer to stabilize the Ce³⁺ state. Previous powder neutron diffraction study reported that Ce atom in (La,Ce)₂Fe₁₄B has no moment [3]. Following the previous results, in this study, powder neutron diffraction experiments were performed on (Nd,Ce,La)₂Fe₁₄B to evaluate the rare-earth moment and the Ce state.

Experimental

The powder samples of Nd₂Fe₁₄B, (Nd_{0.75}Ce_{0.225}La_{0.075})₂Fe₁₄B, (Nd_{0.5}Ce_{0.375}La_{0.125})₂Fe₁₄B, and Ce₂Fe₁₄B were measured. The mass of samples is 5g each. Diffraction patterns were gathered on the Echidna – High-Resolution Powder Diffractometer in Australia's Nuclear Science and Technology Organization (ANSTO). Natural boron was substituted with ¹¹B due to strong neutron absorption. The wavelength of the neutron is 2.44 Å.

Results

Figure 1 shows an observed diffraction pattern of (Nd_{0.5}Ce_{0.375}La_{0.125})₂Fe₁₄B together with a result of Rietveld analysis. The experimental data was well explained by the calculated pattern. Figure 2 shows the obtained Nd content dependences of rare-earth moments. The moment sizes change linearly at Nd 70 % compounds. In contrast, at Nd 50 %, the moment size of 4g site deviates from linear change and increases. The reported rare-earth moments in (Nd,Ce)₂Fe₁₄B, shown as open triangles in Fig. 2, quickly decreases with decreasing Nd content [3]. This result suggests that some Ce atoms in 4g site are magnetic Ce³⁺ state instead of non-magnetic Ce⁴⁺ state thanks to the La atom spacer. The details will be discussed.

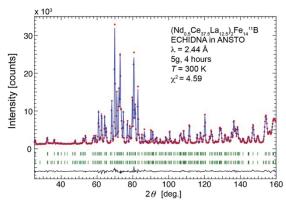


Fig. 1: The diffraction pattern of (Nd_{0.5}Ce_{0.375}La_{0.125})₂Fe₁₄B together with Rietveld refinement results at 300 K.

Reference

- 1) K. Saito, et al., J. Alloy. Compd. 721, 476 (2017).
- 2) R. D. Shannon, Acta Crystallographica A32, 751 (1976).
- 3) C. V. Colin et al., APL 108, 242415 (2016)

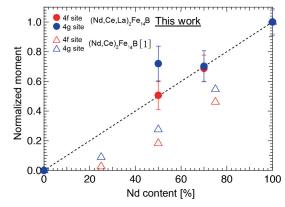


Fig. 2: The Nd content dependence of rare-earth moments at 4*f* and 4*g* site. The Moments shows here are normalized by the Nd moments of Nd₂Fe₁₄B.