ピークピーク電圧検出型高性能 MI センサによる脳磁場の計測

馬 家駒、内山 剛

(名古屋大学)

Development of Peak to Peak Voltage Detector Type MI Gradiometer for Magnetocardiography J. Ma, T. Uchiyama

(Graduate School of Engineering, Nagoya University)

<u>はじめに</u>

MI センサはアモルファスワイヤの磁気インピーダンス(MI)効果を利用した小型で高感度な磁気センサであ り、色々な領域に、例えば、電子コンパス、ITS、非破壊検査と生体磁気計測などへの応用が、期待されてい る。生体磁気などの微小な磁気信号を計測するため、pT レベルの磁気分解能が必要と考えられる。本研究で は、センサシステム感度の向上とノイズの減少を目的として、高感度、低ノイズ化のピークピーク電圧検出 型高性能 MI センサを開発し、脳磁場など生体磁気計測を行った。

ピークピーク型 MI センサ

従来型と比べて、新しいセンサシステムはシステムの動作方 法を改善し、ワイヤへのパルス電流とサンプリングスイッチ パルスの形を調整した。従来型は、ピーク値と基準電位両方 を取って、その差を出力する。ピークピーク型 MI センサは、 発振回路から方形波電圧を生成し、微分回路と遅延回路によ り、二つのタイミングがずれたスイッチパルスを生成する。 センサヘッドのコイル波形には通電パルス電流の立ち上がり と立下りに対応した二つのピークがある。アナログスイッチ を使って、波形の最大値と最小値の差を出力する。短い時間 で時間差分計測により、低周波ノイズ、基準電位の変動や通 電周期の揺らぎによる影響が抑制できる。従来型より、新し いシステムの感度は約1.4倍向上を達成し、良好な線形性が 得られ、ヒステリシスは、ほとんど見られない。Fig. 1 は出 カノイズの磁界スペクトル密度を示す。ノイズレベルは、1Hz から 100Hz のバンド幅 1 pT 程度(60Hz 除く)である。

脳磁場計測

P300 は誘発脳波の中でも認知や判断と関連があり、誘発脳波 の中では比較的振幅が大きく、odd-ball 課題などの単純な課 題設定で誘発することが可能である。P300 は、刺激の発生後 に 250~500msの潜時を有する正の偏向である。P300 では同 一の被験者においても与えられる判別課題の難易度が高くな るとピーク潜時の遅延が報告されているため、今回の実験は、 標準と標的刺激の直径の比を 10:5、10:6、10:7、10:8 と変え てそれぞれ計測を行った。Fig. 2 は被験者 1 から得られた結果 である。実線は標的刺激に対する波形。点線は標準刺激に対 する波形。標的刺激に対する波形には、300m s から 420m s の間で、陽性の P300 ピークが確認できた。標準の方、P300 信 号はほとんど誘発されなかった。判別課題の難易度によって、 P300 成分の潜時は、標準と標的刺激の直径の比によって増加 することを確認できた。

Fig. 1. The magnetic noise spectral density of Pk-pk VD-type MI sensor system comparing with the environment magnetic noise spectral density

Fig. 2. Averaged P300 waveforms evoked by target and standard stimuli in 4 kinds of diameter ratio task conditions

1) J. Ma, and T. Uchiyama, IEEE TRANSACTIONS ON MAGNETICS, VOL. 53, NO. 11, 4003404, NOVEMBER

適応フィルタを前処理とした ICA による低 SNR 心磁図のノイズ除去法

三浦克哉、岩井守生、安倍正人、藤岡豊太、小林宏一郎 (岩手大学)

Noise Reduction Method for Low SNR Magnetocardiogram by ICA with Adaptive Filter Preprocessing K. Miura, M. Iwai, M. Abe, T. Fujioka, K. Kobayashi (Iwate University)

はじめに

心磁図は、心疾患の診断に有効であり、近年臨床研究において注目されている。しかし、心磁図は環境磁 気ノイズに比べて非常に小さいため、ノイズ除去なしに心臓活動を正確に評価することは困難である。その ため現在多くの場合、独立成分分析(Independent Component Analysis:ICA)¹⁾を用いたノイズ除去が行われてい るが、心磁界成分に比べて磁気ノイズが非常に大きい場合、信号分離の妨げとなりノイズ除去が困難になる。 そこで本研究では、適応フィルタ²⁾を用いて定常ノイズを除去したデータに対し ICA を行うことで、低 SNR 下における心磁図のノイズ除去精度の向上を目指しシミュレーションによる検討を行った。

提案方法

シミュレーションでは、磁気シールド内で測定した心磁図に対し加算平均を行い十分にノイズを落とした 信号を理想信号、環境磁気を測定したものをノイズデータとして、これらのデータを任意の SNR となるよ うに混合して用いた。提案方法は、任意の周波数成分 f_1 または f_n (環境磁気データに多く含まれる 50Hz 成 分、およびその高調波)の正弦波信号を参照信号としてフィルタ入力に用い、出力信号に存在する f_1 または f_n の正弦波信号のみを推定する。適応フィルタにより推定された f_1 または f_n の正弦波信号をシミュレーショ ンデータから減算することによって、特定の周波数成分のみを除去する方法である。

シミュレーション結果

本研究ではシミュレーションによりノイズ除去精度を確認した。Fig.1 に SNR-30dB のシミュレーションデ ータを用いた場合のシミュレーション結果を示す。Fig.1(a)に-30dB のシミュレーションデータの波形を示し、 (b)に提案方法による前処理を行い、ICA によるノイズ除去後の波形を示す。Table1 はシミュレーションデー タと理想信号との相関および SNR を測定した結果である。シミュレーションの結果、提案手法は約 30dB の 雑音下で、前処理を加えていないデータ、帯域通過フィルタ(BPF)・帯域除去フィルタ(BEF)を前処理に使用 したデータと比較して、より理想信号に近いデータを再現できていることが分かった。(ノイズ除去の結果、 理想信号との相関は 0.93、SNR は 21.22dB であった)。

Table1 Correlation and SNR at -30dB simulation data

	相関	SNR[dB]
ICA	0.32	17.11
BPF+BEF+ICA	0.90	22.30
適応フィルタ+ICA	0.93	21.22

(a) Simulation data
(b) Signal processed data
Fig.1 Waveforms at -30dB simulation data.

- 1) [詳解]独立成分分析 信号処理の新しい世界(著者: Aapo Hyvärinen, Juha Karhunen, Erikki Oja)
- 2) 藤岡豊太, 永田仁史, 安倍正人, 電子情報通信学会論文誌 A, Vol. J92-A No.2 pp.71-83, 2009

DPM 制御を用いたアクティブ磁気シールドの

シミュレーションによる検討

山﨑皓正、岩井守生、Madan M. Gupta*、Francis M. Bui*、小林宏一郎 (岩手大学、*サスカチュワン大学)

Investigation by Simulation of Active Magnetic Shield with DPM Controller H. Yamazaki, M. Iwai, Madan M. Gupta*, Francis M. Bui*, K. Kobayashi (Iwate University, *University of Saskatchewan)

<u>はじめに</u>

微弱な生体磁気信号の計測を行う際に必要不可欠である磁気シールドの一種にアクティブ磁気シー ルド(AMS)がある。AMS は従来の磁気シールドルームに比べ、安価かつ軽量などのメリットがある。 一般的なシステムに用いられている PID 制御では、作動中に制御パラメータが固定させているため、 応答性と安定性がトレードオフの関係である。そこで、本研究では AMS の新たな制御方法として、 DPM(Dynamic Pole Motion)制御¹⁾²⁾、I-DPM(Integral-DPM)制御を用いたシミュレーションよる磁気シー ルド特性の検討を行った。

提案方法

提案方法である DPM 制御は、比例要素、微分要素をフィードバック補償として用い、それぞれの要 素におけるパラメータを、制御器に入力される偏差によって変化させるものである。本研究で用いる AMS の伝達関数を 2 次遅れ系のシステムとして推定し、DPM 制御ブロックも含めたシステム全体の閉 ループ伝達関数の特性方程式から、各パラメータの関数を決定した。また、定常偏差を減少させるため に DPM 制御に I-PD 制御と同様の方法で積分要素を取り入れた I-DPM 制御も重ねて提案する。Fig.1 に I-DPM 制御のブロック線図を示す。また、本図中点線部で囲まれた部分が DPM 制御ブロックである。 実験結果

本研究では、PID 制御、DPM 制御、I-DPM 制御におけるステップ信号の外乱を入力した場合のシステム出力特性をシミュレーションした。この時の出力波形を Fig.2 に示す。シミュレーション結果より、 DPM 制御では 15.6 %の定常偏差が残り、目標値の 0 に収束しなかった。一方、積分要素を取り入れた I-DPM 制御では、定常偏差が 0 となった。また、PID 制御で整定時間が 1.3 ms、行き過ぎ量が 24.4 %であるのに対し、I-DPM 制御では整定時間が 0.3 ms、行き過ぎ量が 1.58 %となり PID 制御よりも応答性と 安定性が共に向上した結果となった。

Fig.1 AMS's block diagram

Fig.2 AMS's simulation output at the time of inputting step signal

- 1) M. M. Gupta, et al, The 28th North American Fuzzy Information Processing Society Annual Conference, 2009.
- 2) M. M. Gupta, et al, 2010 International Conference on Industrial Electronics, Control and Robotics.

体内インプラントへの無線給電における Wiegand ワイヤの発電効率

和口修平、川添駿平、酒井貴文、山田努、竹村泰司 (横浜国立大学)

Wireless power transmission to implantable medical devices using Wiegand wire Shuhei Waguchi, Shumpei Kawazoe, Takafumi Sakai, Tsutomu Yamada, Yasushi Takemura (Yokohama National University)

はじめに

現在、人体内インプラントやマイクロロボットへ電磁界を用いて給電・治療を行う研究が進められている。 その際の動作周波数は人体へ刺激・熱作用を引き起こさせる可能性があるため、低周波数帯で給電を行うこ とが望ましい。そこで、本研究では Wiegand ワイヤ(FeCoV ワイヤ)を受電コイルのコアに用いた無線給電を 提案している¹⁾。

熱ひねり加工を施した Wiegand ワイヤは、高速な磁壁移動によって大バルクハウゼンジャンプと呼ばれる 急激な磁化反転を生じ、この周りに検出コイルを設置することでこの磁化反転からパルス電圧が得られる²³。

このWiegand ワイヤを用いると、MnZn フェライトよりも低周波数帯で大きな電力を得られることが報告 されている¹⁾。その一方で、Wiegand ワイヤは保磁力を示すためにヒステリシス損失が生じる。この損失を定 量化することは、回路解析において重要だと言える。本講演では、直流・交流磁化測定からヒステリシス損 失の計算を行い、その損失と発電電力の効率および MnZn フェライトとの発電電力の差を比較考察した結果 を報告する。

実験方法

Wiegand ワイヤに振動試料型磁力計(VSM)を用い て直流磁化測定を行った。ヒステリシス損失は磁化 曲線のループ面積と動作周波数の積で得られるため、 磁化曲線からループ面積を導出し、ヒステリシス損 失の算定を行った。

次に、Fig.1 に示すように、ワイヤの周りに給電 用検出コイルを設置し、さらにその外側にはワイヤ の中央部が励磁されるように励磁コイルを置き、正 弦波交流磁界で励磁させた。検出コイルの両端には ダイオードブリッジを接続し、正負双方のパルス出 力を整流させ、パルス出力による電力と交流磁界の 誘導による電力の計算を行った。

実験結果

Fig. 2 に直流磁化曲線を示す。結果より、印加磁 界の増加に従い、磁化の増加とループ面積の増加を 確認した。また、そのループ面積は次第に飽和して いくことも分かった。

ヒステリシス損失の算定や、発電効率、MnZnフ ェライトとの発電電力の差に関しては当日に発表す る。

- 1) Takahashi et al., J. Magn Soc. Jpn., 42, 49, 2018.
- 2) Wiegand and Velinsky, U.S. Patent 3, 820, 090, 1974.
- 3) Takemura et al., IEEE Trans. Magn., 53, 4002706, 2017.

Fig. 1 Configuration of measurement.

Fig. 2 DC magnetization curve of Wiegand wire.

交流磁界によるヒトがん細胞の膜電位への影響評価

林誠也¹,柿川真紀子¹,山田外史² (¹金沢大学,²公立小松大学) Effect of ELE Magnetic Field on membrane potential of human cancer cells S.Hayashi¹, M.Kakikawa¹, S.Yamada² (¹Kanazawa University, ²Komatsu University)

<u>はじめに</u>

これまでに、がん細胞に交流磁界を曝露することで抗がん剤の作用が増強することが明らかとなっている。 このメカニズムは解明されていないが、他のグループの研究によると、磁界によりがん細胞の細胞膜に含ま れるタンパク質の構造が変化することが報告されている。また、外部刺激により細胞膜に存在する膜電位と 膜タンパク質の構造が共に変化すると言われている。これらより磁界が細胞膜に何らかの影響を与え、薬剤 作用が増強する可能性が考えられる。そこで、本研究では膜電位に焦点を当て、交流磁界がヒトがん細胞の 膜電位に与える影響評価を目的とした。

なお、ヒトがん細胞には薬剤の添加により耐性を獲得した細胞が存在しており、この耐性を持ったがん細胞はより多くの薬剤を細胞膜外へ吐き出すため通常のがん細胞とは細胞膜の構造が異なっている。そこで本実験では、ヒト肺がん細胞株A549と多剤耐性細胞であるヒト子宮肉腫株 MES-SA/Dx5を用いた。MES-SA/Dx5 は抗がん剤 Doxorubicin に対し100倍の耐性率を持ち、また複数の薬剤に対しても耐性を持つがん細胞である。 これらのヒトがん細胞を比較することにより、異なる構造の細胞膜に対して交流磁界が与える影響に違いが あるのかを調査した。

細胞膜電位への交流磁界影響の評価方法

交流磁界条件は周波数 60 Hz,磁束密度 50 mT±10%で行った。先行研究において A549 と MES-SA/Dx5 で 共に作用増強が確認された薬剤 Cisplatin, Doxorubicin, Mitomycin C を使用した。膜電位の測定には、膜電位感 受性色素 DiBAC4(3)を用いた。DiBAC4(3)は外部刺激により細胞膜が脱分極すると細胞内に取り込まれ、細胞 膜内のタンパク質などと結合することで蛍光が大きくなり、逆に過分極すると蛍光が小さくなる色素である。 また、DiBAC4(3)は1 mV の膜電位変化に応じ、蛍光強度が1%変化する特性をもつ。この性質を利用し、膜 電位が変化する様子を蛍光強度の変化により測定した。

細胞膜電位への交流磁界影響評価の結果

ヒト肺がん細胞 A549 において,反応時間 2 min で約 2.5% の蛍光相対比の有意な減少,つまり約 2.5 mVの膜電位増加 が見られた(Fig.1)。一方,多剤耐性細胞であるヒト子宮肉腫 株 MES-SA/Dx5では,反応時間 10 min で約 2.5 mVの膜電 位増加が見られた。この結果から本実験での反応時間では, 肺がん細胞 A549 と子宮肉腫株 MES-SA/Dx5 共に交流磁界単 独によって膜電位が増加し,また A549 と MES-SA/Dx5の間 では交流磁界によって影響が表れる時間に違いがあること がわかった。

現在,細胞膜構造の違いによる膜電位の変化を比較する ため,MES-SA/Dx5 が耐性を持つ前のがん細胞であるヒト子 宮肉腫株 MES-SA においても実験を進めている。また,抗 がん剤の反応時に交流磁界を併用させることで膜電位に影 響が表れるのかを調査している。

(n=6, *p<0.05) Fig.1 Effect of MF alone on membrane potential of A549 cells

超伝導磁気分離による火力発電所給水中からのスケール除去

廣田 憲之¹, 岡田 秀彦¹, 三島史人², 西嶋茂宏², 秋山庸子³, 松浦英樹⁴, 難波正徳⁴, 関根智一⁵ (物材機構¹、福井工大²、阪大³、(株)四国総合研究所⁴、荏原工業洗浄⁵)

Application of superconducting magnetic separation for the removal of scales from boiler feed water in thermal power plants

N. Hirota¹, H. Okada¹, F. Mishima², S. Nishijima², Y. Akiyama³, H. Matsuura⁴, S. Namba⁴ and T. Sekine⁵ (NIMS¹, Fukui Univ. of Tech.², Osaka Univ.³, Shikoku Research Institute Inc.⁴, Ebara Industrial Cleaning Co. Ltd.⁵)

火力発電は主要な発電手段であるが、二酸化炭素の排出量が多い。このため、火力発電所において発電効 率を向上させれば、発電のための燃料消費量の低減につながり、ひいては、二酸化炭素の排出量の削減につ ながると期待される。火力発電所においては、ボイラーにおいて発生した高温の蒸気はタービン発電機を回 して発電を行ったのち、凝縮して水となり、配管を通じてボイラーに戻る。火力発電所給水配管には鉄系酸 化物スケールの付着が起こり、この酸化物層が熱交換効率を低下させる原因となっている。したがって、ス ケールの付着を低減できれば、二酸化炭素排出量の削減に寄与できると考えられる。スケールは主として酸 化鉄で構成される。鉄は給水配管中の比較的低温部分の壁面から溶出し、200℃以上の高温になる部分でマグ ネタイトとなって、給水配管壁面に付着する。マグネタイトはその磁気的性質を利用して容易に分離するこ とができる。そこで我々は火力発電所給水配管中のスケール除去に高勾配磁気分離技術を適用する方法を検 討している。高勾配磁気分離では強磁性ワイヤーを編んだ網を積層して構成されるフィルターマトリックス を超伝導磁石のボア中を通過する流路内に設置して使用する。マグネタイト粒子は磁化された強磁性ワイヤ 一表面に磁気力によって引き寄せられることで流体中から分離される。本研究プロジェクトでは、火力発電 所ボイラー給水系のどの部分に磁気分離システムを設置するのが適切か、最適なマトリックス構造、磁場条 件、運転条件や手順などについてシミュレーションと実験により検討を行なった。AVT タイプの火力発電所 の場合、温度 200℃、流量 400-500 m³/h、圧力 20 atm の高圧ドレインと呼ばれる場所が適切な設置場所と 考えられることがわかった。バッチ式の高温高圧実験、常温常圧大流量の循環式実験を通して、マトリック スに必要な条件を検討した。当日はこれらの検討結果の詳細を報告する。

謝辞

本研究の一部は国立研究開発法人 科学技術振興機構(JST) 先端的低炭素化技術開発(ALCA)のグラント番号 JPMJAL1304 を受けて実施したものである。

磁気マーカーのクラスタ形成を利用した 洗浄工程不要の免疫検査法の開発

秋吉一輝、五藤仁哉、吉田敬、笹山瑛由、圓福敬二、原美里* (九州大学、多摩川精機*)

Wash Free Detection of Biological Targets Utilizing Cluster Formation of Magnetic Markers K. Akiyoshi, J. Goto, T. Yoshida, T. Sasayama, K. Enpuku, M. Hara* (Kyushu University, Tamagawa Seiki*)

<u>はじめに</u>

免疫検査とは血液検査などの医療診断において、疾患由来の蛋白質や病原体などのバイオ物質(抗原)の 有無や量を測定する方法である。磁気マーカーを用いた免疫検査法では、ブラウン磁気緩和現象を用いるこ とにより、バイオ物質に結合した磁気マーカー(Bound markers)と未結合マーカー(Free markers)を磁気的 に識別できる。このため、従来の光学的手法で必要とされてきた B/F 分離のための洗浄工程を省いた迅速な 検査が可能となる。今回、磁気マーカーとバイオ物質の結合により磁気マーカーのクラスタを形成させる手 法を導入し、このクラスタを用いた洗浄工程不要の検査法を開発した。

<u>実験方法</u>

Fig.1に磁気的免疫検査法の原理を示す。本研究では、バイオ物 質として C-反応性蛋白質(CRP)を用いており、磁気マーカーは C6cc 抗体付き FG ビーズと C2 抗体付き FG ビーズ(多摩川精機) を用いた。CRP 及び2種類の磁気マーカーを溶液中で1時間反応 させることで、Fig.1に示すように、CRP を介して磁気マーカーが クラスタを形成する、これが結合マーカーとなる。なお、溶液中 には結合していない磁気マーカー(Free markers)も共存する。

粒子のブラウン緩和時間 τ_B は粒子の直径により決まり、動的光 散乱法により計測した結合マーカー(クラスタ)の直径は $d_{HB} > 1 \mu m$ であるため、緩和時間は $\tau_{BB} > 0.4 s$ となる。一方、未結合 マーカーの流体力学的直径は $d_{HF} = 160 nm$ であり、緩和時間は $\tau_{BF} = 1.6 ms$ となる。

この緩和時間の違いにより、 $f >> 1/\tau_{BB}$ となる周波数の交流磁 界を印加した場合には、結合マーカーからは磁気信号が発せら れず、未結合マーカーからのみ信号が発せられる。従って、B/F分離を磁気的に行うことが可能となる。実験では振幅 4 mT、周 波数 330Hz の励起磁界を印加し、検出コイルにより検出した第 三高調波 (f = 990 Hz)を測定信号とした。

<u>実験結果</u>

Fig. 2 に CRP の検出結果を示す。図の横軸は CRP の濃度 ϕ_{CRP} である。図の縦軸は第三高調波信号の減少率gを示す。ここで減少率gは、CRP がない状態の測定信号 $V_0(\phi_{CRP}=0)$ から各 CRP 濃度の測定信号 $V(\phi_{CRP})$ を引いた値を V_0 で割った値である。図 に示すように、減少率は CRP 濃度とともに増加し、両者には良 い相関が得られた。最小の検出限界は 0.1 ng/mL となった。こ の結果は、洗浄工程なしで CRP の検出が可能なことを示してお り、本手法の有効性が示された。

Fig. 1. Wash-free detection of biological targets using cluster formation of magnetic markers.

Fig. 2. Wash-free detection of CRP. Reduction of 3^{rd} harmonic signal is shown when concentration of CRP is changed from 0.1 to10 ng/mL.

スイッチ磁界に対する磁性ナノ粒子の応答性を利用した細菌検出

高橋隼之介*,トンタットロイ*,小野寺英彦**,沖田和彦**,薮上信*,**,横田琴音*,**,

古谷真衣子*, 金高弘恭*, 三浦由則***, 高橋英樹***

(*東北大学,**東北学院大学,***ジーエヌエス有限会社)

Measurement of bacteria using magnetic beads by switching magnetic field.

S. Takahashi*, L. Tonthat*, H. Onodera**, K. Okita**, S. Yabukami***, K. Yokota***, M. Furuya*, H. Kanetaka*,

Y. Miura***, H. Takahashi***

(*Tohoku University, **Tohoku Gakuin University, ***JNS Co., Ltd.)

<u>1 はじめに</u> スイッチ磁界に対する磁気ビー ズの応答性から抗原抗体反応により培養したう蝕菌 等を検出した。

2 計測方法 Fig.1は試作システムの構成を示 したものである。本システムは容器、回転機構、磁 石および励磁コイル、磁気ビーズからの漏れ磁界を 検出する磁界センサ(ジーエヌエス製 MI センサ) から構成される。試料は永久磁石 (NdFeB 磁石,4mm ×4mm×1mm) で約 600 秒間着磁され、永久磁石を 取り除いて 54 回転する(回転速度は 100 degree/sec)。 励磁コイルにより周回毎にスイッチ磁界により磁性 ナノ粒子をスイッチし、段階的に磁界を増加させる。 コイルによる毎回の着磁時間は 10 秒~30 秒程度、 磁界強度は最大10mT程度とした。容器は周回して 磁界センサで磁性ナノ粒子の漏れ磁界を検出して、 細菌との結合の違いによりスイッチ磁界に対する磁 性ナノ粒子の応答性が異なることから細菌数を検出 する。

<u>3 計測結果</u> Fig. 2 は培養菌の検出結果を示したものである。Protein A が添加された磁性ナノ粒子 (Nanomag-D, 平均粒径 0.5 µm¢)と1次抗体 (Anti-S. mutans antibody あるいは Anti-P. gingivalis antibody) を結合させた後、う蝕菌 (S. mutans) あるいは歯周病菌 (P. gingivalis) と抗原抗体反応をさせた。細菌の濃度を変化させてスイッチ磁界に対して磁性ナノ 粒子が磁化反転する際の磁束密度を縦軸に表した。

S. mutans あるいは P. gingivalis の濃度が高くなるに 従って、磁性ナノ粒子の磁化反転に必要な磁束密度 が高くなることから、細菌濃度、細菌数が計測可能 であると考えられる。また細菌濃度については 10⁴ CFU/ml 程度までの検出が可能であり、実用化されて いる別評価方法に比較して同程度かより高感度であ ることがわかる²⁰。健常者および高齢者施設入居者 の口腔細菌を検出しており、学術講演会では報告予 定である。

<u>謝辞</u> 本研究の一部は JST COI TOHOKU プロジェク

トの研究成果である。本研究の一部は JST ASTEP の 成果である。

<u>参考文献</u> 1) W.F. Brown, J. Appl. Phys. 34, 1319 (1963). 2) 細菌カウンタカタログ(パナソニック).

Fig. 1 Schematic view of the sensor.

Fig. 2 Magnetic flux density when the magnetic nanoparticles are reversed as a function of density of bacteria.

MPI における未結合粒子と結合粒子の識別手法の開発

東大路、野口裕希、吉田敬、圓福敬二 (九州大学)

Development of the discrimination method of mobile and immobilized magnetic nanoparticles in MPI Oji Higashi, Yuki Noguchi, Takashi Yoshida, Keiji Enpuku

(Kyushu University)

1 はじめに

近年、磁気応用による医療診断技術が注目されており、その中の一つに磁気粒子イメージング(MPI)が挙げ られる。本研究では、MPIで用いられる磁気ナノ粒子 MS1 において、検査対象と結合した粒子を「固相サン プル」、未結合の粒子を「液相サンプル」として疑似的に再現し、それぞれの高調波信号特性の違いにより両 者の識別を行うことを目指した。

2 原理

2.1 高調波磁化特性

MPI で用いられる直流傾斜磁界に対する、高調波の信号特性を利用して識別を行う。液相サンプルと固相サ ンプルでは、磁気緩和に違いが生じるため、直流傾斜磁界に対する信号の減衰に差異が生じる。

本研究では、固相サンプルの磁化容易軸を交流励起磁界と同じ方向に揃え、また検出信号として第三,第五 高調波を用いることで、精度の高い状態識別を目指した。

2.2 画像再構成

第三、第五高調波の検出信号 v3rd と v5th から、液相及び固相サンプルの空間分布 clia と csol を再構成する手法 として、以下に示す NNLS(Nonnegative Least Squares)法を用いる。

$$\begin{pmatrix} v_{3rd} \\ v_{5th} \end{pmatrix} = \begin{bmatrix} A_{liq3rd} & A_{sol3rd} \\ A_{liq5th} & A_{sol5th} \end{bmatrix} \begin{bmatrix} c_{liq} \\ c_{sol} \end{bmatrix}$$
(1)
$$\begin{bmatrix} A_{liq3rd} & A_{sol3rd} \\ A_{liq5th} & A_{sol5th} \end{bmatrix} \begin{bmatrix} c_{liq} \\ c_{sol} \end{bmatrix} - \begin{bmatrix} v_{3rd} \\ v_{5th} \end{bmatrix} \|^2 + \lambda \left\| \begin{bmatrix} c_{liq} \\ c_{sol} \end{bmatrix} \right\|^2 \to min$$
(2)

ここで、Aliq3rd, Asol3rd は、液相・固相サンプルの第三高調波 PSF(Point Spread Function)、Aliq5th, Asol5th は、液相・ 固相サンプルの第五高調波 PSF である。

3 実験結果

サンプル容器のサイズは、直径6mm、深さ13mm の物を使用した。液相サンプルは MS1 を 10.8 μL に精製水 139.2 µL 加えて作成し、固相サンプルは MS1を10.8 µLにエポキシ樹脂180 mg 混ぜ合わせ て作成した。

本研究では液相サンプルを(x,y)=(7 mm,0 mm)に 置き実験を行った。測定条件は交流励起磁界の振 幅 3.5 mT、周波数 3 kHz、直流傾斜磁界が x 軸方 向に1mT/mm、y軸方向に2mT/mmとした。

Fig. 1 MPI images for (a) mobile and (b) immobilized samples.

Fig1.に示すように、高調波信号特性を利用することで、状態識別が行えていることが分かる。固相サンプ ルと液相サンプルを同時に配置し、イメージングを行った結果についても報告する予定である。

参考文献

Yoshida, Takashi, et al. "Effect of alignment of easy axes on dynamic magnetization of immobilized magnetic 1) nanoparticles." Journal of Magnetism and Magnetic Materials 427 (2017): 162-167.

磁気センサアレイによる磁気ナノ粒子トモグラフィの開発

笹山 瑛由、吉田 敬 (九州大学)

Magnetic nanoparticle tomography using magnetic sensor array Teruyoshi Sasayama, Takashi Yoshida (Kyushu University)

1. はじめに

ナノメートルサイズの磁気ナノ粒子を高分子でコーティングし、その表面に検査試薬や薬剤を固定したも のは磁気マーカーと呼ばれる。その磁気マーカーを体内に注入し、磁気マーカーからの磁気信号を検出する ことにより、癌等の疾病領域を高感度・高分解能に画像化する磁気粒子イメージング(MPI)が医療診断にお いて注目されている。MPI は強い傾斜磁場を用いることで空間分解能が高くなるが、人体スケールで実現し ようとすると、その傾斜磁場を生成することが困難なことが課題なっている。

一方、心磁図や脳磁図は体内で自発的に生成された磁界を磁気センサアレイで計測する手法がある。これ らの特長として、時間分解能が高い他、磁気センサーを高密度に配置することにより空間分解能を高められ る。また、人体を覆うような傾斜磁場コイルは不要となる。そこで、本稿では、傾斜磁場コイルを用いず磁 気センサアレイを用いて磁気ナノ粒子の分布を可視化する手法(磁気ナノ粒子トモグラフィ)を提案する。

2. 方法

図1に開発している磁気ナノ粒子トモグラフィシステムを示す。1個の大きな励磁コイルの内側に16個の 小さな検出コイルを配置している。励磁電流の周波数は 5400 Hz とし、振幅は 1, 2, ..., 20 A と変化させて、 磁気ナノ粒子より得られる磁界データを増加させた。検出コイルの電圧を A/D コンバータで計測し、磁気ナ ノ粒子から生ずる第3高調波の磁界信号を高速フーリエ変換により取得した。磁気マーカーは、MPIの研究 でも広く用いられている Resovist (富士フィルム RI ファーマ製)を用い、それをグリセロールで固相化した サンプルを用いた。まず、サンプルを自動ステージで走査しシステムファンクションを生成した。次に、サ ンプルを複数配置して磁界計測を行い、その計測結果と事前に取得したシステムファンクションを用いて逆 問題を解き、サンプルの位置を推定した。なお、励磁コイルとサンプルとの距離は 30 mm とした。

3. 結果

図2に、2個サンプルを配置した時の、逆問題解析によるサンプル位置の推定結果を示す。図より、2個の サンプル位置を区別して推定できていることから、本提案手法が有効であることがわかる。

謝辞:本研究はJSPS 科研費(19K14996)および公益財団法人マツダ財団助成による。

Fig. 1 The arrangement of the coils.

Fig. 2 Estimated distribution of the magnetic nanoparticle concentration

振動磁場中における酸化鉄ナノ粒子分散液の磁気誘起直線二色性

諏訪雅頼、魚谷明良、塚原聡 (大阪大学)

Magnetic linear dichroism of iron oxide nanoparticle suspension under alternating magnetic field Masayori Suwa, Akira Uotani, Satoshi Tsukahara

(Osaka Univ.)

はじめに

振動磁場中における磁気ナノ粒子(Magnetic nanoparticle, MNP)の配向・回転運動は、磁気粒子イメージン グの精度やハイパーサーミアの発熱効率に影響を及ぼす。また、MNPの流体力学径の変化を利用したバイオ アッセイや、MNPをプローブとしたナノレオロジー測定など、MNPの回転を利用した新手法も考案されて いる。我々は以前の研究¹⁾で、振動磁場中で MNP分散液の吸光度を Faraday 配置で測定したところ、その時 間変化から MNPの配向・回転運動が観測できることを実証した。これは測定した MNPの磁化容易軸と光軸 が平行で、光の進行方向(即ち磁場の方向)に光軸が配向するためである。しかし、流体力学的に取り扱い が容易な球状の MNPを測定した場合、吸光度変化が非常に小さく解析が困難であった。そこで本研究では、 磁場と光を垂直とする Voigt 配置により磁気誘起直線二色性の直接測定を試みた。

実験方法

Fig.1 に磁気誘起直線二色性測定装置を示す。以前と同様に、LCR 回路の放電で得られる減衰振動磁場を利用した。回路内のキャパシタを交換することで、27 kHz~180 kHz の間で離散的に周波数を変えた。Voigt 配置に設定するためスプリット型の空芯コイル(ボア径 10 mm ¢)を作製した。MNP分散試料は光路長 3 mmの石英光学セルに入れ、コイル内に設置した。光源には波長 405 nmのレーザ光を用い、入射偏光角を磁場に対して 45°に調節した。ウォラストンプリズムで透過光を 0°と 90°の直線偏光に分離し、その差分をバランス検出器により測定した。得られたシグナルから、試料内の磁気誘起二色性による偏光角変化を見積もった。試料として、粒径 10 nm ~ 25 nm のマグネタイト MNP 分散液(Sigma-Aldrich)を測定した。

結果と考察

Fig.2 に減衰振動磁場印加に伴った直径 10 nm の MNP 分散液中の偏光角変化を示す。MNP はほぼ球 形で個々の MNP の二色性が小さいため、以前の吸 光度変化測定系では質の良い信号が得られなかっ たが、本研究では直線二色性の直接観測により高感 度化に成功し、明瞭な信号が観測できた。さらに、 偏光角変化から MNP 容易軸の平均角を見積もり、 MNP の配向・回転運動の粒径依存性を調査した。

Fig.1 The illustration of the experimental setup for magnetic linear dichroism measurement under oscillating magnetic field.

Fig.2 Typical waveform of polarizing angle change $\Delta \Theta$ in MNP suspension (a) under the damped oscillating magnetic field (b).

参考文献

1) M. Suwa, A. Uotani, S. Tsukahara, J. Appl. Phys. 125, 123901 (2019).

転移性骨腫瘍ハイパーサーミア用マグネタイト含有 生体活性骨セメントの発熱特性

○久保田萌¹,小川智之¹,斉藤伸¹,バラチャンドランジャヤデワン²,川下将一³ (1東北大学,2滋賀県立大学,3東京医科歯科大学)

Heat generation characteristics of bioactive bone cement containing magnetite for hyperthermia of metastatic bone tumor

OMoe Kubota¹, Tomoyuki Ogawa¹, Shin Saito¹, Balachandran Jeyadevan², Masakazu Kawashita³ (¹Tohoku University, ²University of Shiga Prefecture, ³Tokyo Medical and Dental University)

1. 研究背景

近年、がん罹患者数は増加の一途をたどっており、骨転移は多くのがん患者に認められる症状である[1]。 骨転移に対する主な治療法としては、外科的療法、放射線療法、化学療法などが挙げられるが、副作用など 身体への負担が大きいことが課題となっている。また、骨腫瘍は骨を破壊しながら増殖するため、強い痛み や圧迫骨折をもたらすことがある。痛みを軽減し、骨の強度を高める方法として、脆くなった骨(特に椎骨) の内部に骨セメントを充填する治療法(経皮的椎体形成術)がある。そこで我々は、経皮的椎体形成術にお いて骨セメントの充填と同時にがんの治療を行えば、より効果的な治療が実現できると考え、身体への負担 が少なく局所的な治療が可能な、磁性体を利用したハイパーサーミア(温熱療法)に注目した。本研究は、 骨セメントに高い生体親和性を有するチタニア(TiO2)及び、温熱種としてマグネタイト(Fe3O4)を含有 させることで、骨との親和性が高く、しかもがんの温熱治療が可能な骨セメントの創製を目的とする。

実験方法

セメント粉末として、ポリメチルメタクリレート (PMMA)、過酸 化ベンゾイル(開始剤)、Fe₃O₄粉末及びTiO₂粉末をTable 1の重量 比通りに乳鉢を用いて 10 分間混合した。また、セメント液として、 メタクリル酸メチル (MMA) 及び N,N-ジメチル-p-トルイジン (促 進剤)を用いた。開始剤はMMAの重量に対して4%、促進剤はMMA の重量に対して2%とした。その後、セメント粉末とセメント液を約 3分間、均一に混和した。作製した試料の磁気特性を振動試料型磁力 計により調べ、600 kHz, 40 Oe の交流磁場下における試料の発熱特性 を調べた。

Sample	Powder (wt %)			Liquid (wt %)	
-	TiO ₂	Fe_3O_4	PMMA	MMA	
Control	0	0	40	60	
T10M10	10	10	32	48	
T15M15	15	15	28	42	
T20M20	20	20	24	36	

25

30

24

22

36

33

T15M25

T15M30

15

15

Table 1 Composition of coment

3. 結果

各試料の飽和磁化(Ms)と保磁力(Hc)を Table 2 に、各試料に交流磁場を 10 分間印 加したときのセメント表面の温度変化を Fig. 1にそれぞれ示す。T15M25及びT15M30 は交流磁場の印加によって 42 ℃以上に到 達した。この温度は、温熱治療に有効な温度 といわれているため、本研究で作製した骨セ メントは、磁気ハイパーサーミアの温熱種と して機能する可能性が示唆された。

当日は、各セメントの磁気的性質と温度上昇との関連性や、骨結合 性の指標の一つである擬似体液中におけるアパタイト形成能評価の結 果についても報告する予定である。

参考文献

[1] 日本臨床腫瘍学会, 骨転移診療ガイドライン, 南江堂, pp.2-10 (2015)

Fig. 1 Change in temperature of samples placed under alternating magnetic field of 600 kHz, 40 Oe for 10 min.

of each sample

Sample

T10M10

T15M15

T20M20

T15M25

T15M30

Ms

[emu/g]

9.5

16.2

18.5

25.0

28.7

Hc

[Oe]

116.6

114.5

117.4

123.4

123.4

高周波磁化過程測定の高精度化と直流磁場重畳

小野寺礼尚1、黒岩拓也2*、柳原英人3、喜多英治1

(¹茨城高専、²筑波大学大学院(現シャープ)、³筑波大学)

Improvement of accuracy in a high frequency magnetization process measurement and superposition of a

static magnetic field

R. Onodera¹, T. Kuroiwa², H. Yanagihara² and E. Kita¹

(¹NIT Ibaraki College, ²Univ. of Tsukuba)

はじめに

磁性ナノ粒子の高周波磁場印加による発熱をがん治療に利用するハイパーサーミア技術では、発熱量はナ ノ粒子のヒステリシス損失に依存するため、その*M-H*ループを正確に評価することは重要である。また、こ の損失は磁気モーメントのブラン緩和およびネール緩和によって生じるが、*M-H*ループからそれぞれの緩和 機構の寄与を分離することはできない。直流磁場により粒子を配向させた上で交流磁化測定を実施すれば、 粒子の回転を抑制した上での*M-H*ループが得られると考えられるため、直流・交流の複合磁場下の磁気特性 評価は、ナノ粒子の発熱特性に対する緩和機構の寄与の実験的検討に資すると考えている。

以上のことから本研究では、ハイパーサーミア用磁性ナノ粒子の開発過程で要求される高精度な高周波磁 化測定装置および、印加方向を制御可能な直流磁場重畳装置の開発を目的としている。

装置構成および実験方法

本装置は、DC 磁場発生部とこれまでに報告した AC 磁化測定装置を 組み合わせた構成となっている。Fig. 1 に示すように、DC 磁場発生に は φ 50mm の磁極を有する電磁石を用い、この磁極間に AC 磁化測定よ うの AC 磁場発生コイルおよび、磁化・磁場検出コイルを設置している。 DC 磁場は磁極中心でおよそ 1 kOe の磁場発生が可能となっている。AC 磁場発生は磁場発生用空芯コイルとコンデンサからなる直列 LC 共振回 路と高周波電源(1 kW) で構成されており、20 k~1 MHz の範囲で高周 波磁場を発生させることができる¹⁾。

磁化測定の精度と周波数依存性を評価するために、標準試料とし て常磁性 Dy₂O₃ 粉末、YIG 3 mm 球、MnZn フェライトなど、磁気特 性が既知の試料を用いて周波数 60 k-200 kHz、AC 磁場振幅 600 Oe、 DC 磁場 500 Oe の範囲で測定精度の評価を行なった。

結果

Figure 2 に、磁極間に設置した AC 磁場発生コイルの電源出力一 定条件における、発生磁場の変化を示す。ここからわかるように、 AC 磁場コイル長 55 mm に対してギャップが 65 mm の磁極では磁 場の出力がおよそ 2/3 ほどに減少していることがわかる。これは DC コイルに通電していない条件でも、発生した AC 磁場に対して磁極 が応答しているためであると考えられる。また、この影響はギャッ プ 95 mm ではほぼないが、一方で DC 磁場強度は 560 Oe まで低下 してしまうことが明らかとなった。標準試料および磁性流体の測定 結果に関しては、当日報告する。

1) A. Seki, et al., J. Phys.: Conf. Ser., 521 (2014) 012014

Fig. 1 Schematic representation of the experimental setup.

Fig. 2 Detected magnetid field with wide and narrow gaps, and without a magnetic pole.

磁気分離したフェルカルボトランの SLP

石川真守¹, 竹内誠治¹, 史冠男¹, 大多哲史², 吉田敬³, 圓福敬二³, 加藤一郎⁴, 野原聡⁴, 山田努¹, 竹村泰司¹

(1横浜国立大学,2静岡大学,3九州大学,4名糖産業株式会社)

Specific loss power of magnetically fractionated Ferucarbotran

Mamoru Ishikawa¹, Seiji Takeuchi¹, Guannan Shi¹, Satoshi Ota², Takashi Yoshida³, Keiji Enpuku³,

Ichiro Kato⁴, Satoshi Nohara⁴, Tsutomu Yamada¹, Yasushi Takemura¹

(¹Yokohama National Univ., ²Shizuoka Univ., ³Kyusyu Univ., ⁴Meito Sangyo Co. Ltd.)

<u>はじめに</u>

がん細胞は正常細胞と比較して、血管組織が未発達であり細胞自身の冷却機能が低いため、約 42.5℃で死 滅する。そして、この特徴を活かして、磁気ハイパーサーミアというがん細胞を熱で死滅させる治療法が注 目されている。磁気ハイパーサーミアの実現化には人体影響を考慮した磁場強度・周波数下で磁性ナノ粒子 が十分な発熱を得ることが課題である。本研究では磁性ナノ粒子の測定を行い、高い発熱効率 Specific loss power (SLP) が得られたので報告する。

<u>実験方法・結果</u>

本研究では測定粒子としてフェルカルボトラン (Ferucarbotran、γ-Fe₂O₃/Fe₃O₄)を磁気分離した MS1 (名糖 産業株式会社)¹⁾ (液中粒径 61 nm, コア粒径 21.6 nm^{1,2)})を使用した²⁾。それを希釈した液中試料とエポキシ 樹脂で固定した 2 つの試料を作製した。固定試料においては、無磁場下で固定をした無配向固定試料(Fig. 1 (a))と 575 kA/m の直流磁場中で固定をして粒子の磁化容易軸を揃えた配向固定試料(Fig. 1 (b),(c))も 2 種類を 作製した³⁾。どちらの試料においても鉄濃度が 2 mg/mL になるように調整した。それぞれの試料の直流磁化 特性、また磁場強度 4 kA/m、16 kA/m、周波数 1–100 kHz で交流磁化特性の測定を行い、配向試料については 磁化容易軸に対して平行方向と垂直方向に励磁をして、試料の磁化容易軸、困難軸方向の測定を行い、SLP を 計算した。

Fig. 2 に MS1 の 4 kA/m の SLP を示す。低周波では液中試料の SLP が最大になり、高周波では容易軸方向の配向試料の SLP が最大となることが確認できた。当日はこれらの結果の詳細に加え、Resovist®との比較等も報告する。

- 1) 吉田敬, まぐね. Vol. 13, No. 4, pp161-166, 2018
- 2) Sasayama et al., IEEE Trans.Magn, Vol. 50, No. 11, 2015
- 3) Shi et al., J.Magn.Magn.Master, Vol. 473, pp. 148-154, 2019

Fig. 1 Preparation process of oriented samples.

Fig. 2 Frequency dependence of SLP of MS1.

Cuマトリクス中に配向する 強磁性単結晶ナノキューブの交流磁化特性

小林昌太¹、山南豪¹、坂倉響¹、竹田真帆人¹、山田努¹、大多哲史²、竹村泰司¹ (¹横浜国立大学、²静岡大学)

AC magnetization characteristics of oriented ferromagnetic single crystal nanocube in copper matrix

Shota Kobayashi¹, Tsuyoshi Yamaminami¹, Hibiki Sakakura¹,

Mahoto Takeda¹, Tsutomu Yamada¹, Satoshi Ota², Yasushi Takemura¹

(¹Yokohama National University, ²Shizuoka University)

<u>はじめに</u>

磁性ナノ粒子を用いた磁気ハイパーサーミア治療において、交流磁場中における磁性ナノ粒子の発熱が重 視される。従来では磁性ナノ粒子の形状磁気異方性に着目した研究が行われていた¹⁾一方、磁性ナノ粒子の 結晶磁気異方性に着目した研究というものは少ないようである。本研究では、銅マトリクス中に配向して存 在する強磁性ナノキューブについての磁化測定を行うことにより、結晶磁気異方性に由来する磁化特性を観 測することに成功した。

<u>実験方法</u>

本研究ではFig.1に示すような合金立方体試料Cu₇₅-Ni₂₀-Fe₅ alloys²⁾を用い、直流磁化測定を磁場強度4-1200 kA/m、交流磁化測定を励磁周波数 1-100 kHz,磁場強度4 kA/mの条件で行った³⁾。また、交流磁化測定においては、測定試料に直流磁場 1200 kA/m を印加することで銅マトリクス及び強磁性ナノキューブに生じる渦電流による信号のみを検出し、直流磁場を印加しない場合との差分より試料磁化のみを導出した。このとき、直流磁場は交流磁場と垂直に印加した。測定は試料の結晶方位[100]、[110]、[111]方向についてそれぞれ行った。

<u>実験結果</u>

直流磁化測定より得られた磁化曲線において、 64 kA/m以上の磁場を印加したとき、結晶磁気異方性に 由来する磁化特性の変化を確認することができた。

結晶方位[100]方向における交流磁化曲線を Fig. 2 に示 す。いずれの結晶方位においても、この交流磁化曲線に 変化は見られなかった。これは交流磁化測定では、異方 性を確認できるほど十分大きな磁場を印加することが できないためであると考えられる。TEM 等の構造評価や、 結晶磁気異方性による磁化特性の詳細は当日発表する。

参考文献

- Guannan Shi, Ryoji Takeda, Suko Bagus Trisnanto, Tsutomu Yamada, Satoshi Ota, Yasushi Takemura, *J Magn Mgn Mater*, **473**, 148, (2019)
- 金俊燮,坂倉響,竹田真帆人,銅と銅合金,56,102 (2017)

Ferromagnetic nanocube

Fig. 2 Hysteresis loops of Cu₇₅-Ni₂₀-Fe₅ alloys oriented in [100] direction.

Au コート Fe₂O₃ 粒子の交流磁化特性と発熱特性

山南豪¹,小林昌太¹,Tonthat Loi²,水戸部一孝³,薮上信²,山田努¹,大多哲史⁴,竹村泰司¹ (¹横浜国立大学,²東北大学,³秋田大学,⁴静岡大学)

Evaluation of AC magnetization and heat dissipation of Au coated Fe₂O₃ particles

Tsuyoshi Yamaminami¹, Shota Kobayashi¹, Loi Tonthat², Kazutaka Mitobe³,

Shin Yabukami², Tsutomu Yamada¹, Satoshi Ota⁴, Yasushi Takemura¹

(¹Yokohama National University, ²Tohoku University, ³Akita University, ⁴Shizuoka University)

はじめに

近年磁性体には様々な医療応用が期待されており、その1つに磁気温熱治療がある¹⁾。この技術の実用化に向けて、磁性体の磁化と発熱の振る舞いを解明することが重要である。本研究では、Fe₂O₃にAuをコーティングした粒子について磁化測定をすることにより、試料の磁化特性及び発熱特性を検討した。

実験方法

本研究では測定試料として粒径が 50-120 µm の Fe₂O₃粒子と Au をコーティングした Fe₂O₃粒子を用い、そ れぞれ直流磁化測定を磁場強度 4, 8, 16, 1200 kA/m、交流磁化測定を励磁周波数 10-400 kHz,磁場強度 4 kA/m の条件で行った。交流磁場印加時、光ファイバープローブで温度測定を行った際 Au コート Fe₂O₃粒子は Fe₂O₃ 粒子に比べて温度上昇が非常に大きいことが報告されている²⁾。また、磁気温熱治療用インプラントの Au コ ートしたフェライトにおいて発熱量が向上することも報告されている³⁾。Au コートの有無で異なる 2 つの試 料において磁化測定をすることにより、Au コートによる影響を検討した。

実験結果

両試料について直流磁化測定において保磁力がほとんど確認されなかった。Fig. 1 に Fe₂O₃粒子の4 kA/m, 10-400 kHz における交流磁化曲線、Fig. 2 に Fig. 1 の交流磁化曲線における原点付近の拡大図をそれぞれ示す。 Fe₂O₃粒子の交流磁化曲線において概形は直流磁化測定結果とほぼ同じであるが、周波数の増加に伴い保磁力 の増加が確認された。Au コート Fe₂O₃粒子の交流磁化曲線においては Fe₂O₃粒子の場合と同様に概形の周波 数変化はほぼなく、周波数の増加に伴う保磁力の増加が確認された。Au コート Fe₂O₃粒子の発熱は、その交 流磁化特性並びに渦電流損失より説明される。詳細は当日発表する。

参考文献

- 1) Jordan, et al, J Magn Mgn Mater, 201, pp.413-419 (1999).
- 2) Loi Tonthat, et al., IEEE Trans. Magn., 54, 5400506, (2018).
- 3) Takura, et al., IEEE Trans. Magn., 43, 2454, (2007).

-108 -

パルス磁場を用いた磁性ナノ粒子の ネール緩和とブラウン緩和過程の重畳観測

大多哲史¹,竹村泰司² (¹静岡大学,²横浜国立大学)

Superposition of Néel and Brownian relaxations of magnetic nanoparticles in applying pulse field

S. Ota¹, Y. Takemura²

(¹Shizuoka University, ²Yokohama National University)

<u>はじめに</u>

磁性ナノ粒子のハイパーサーミアや磁気粒子イメージング(Magnetic particle imaging: MPI)といった医療応用を考える際に、磁気緩和をはじめとする磁化ダイナミクスを解明は必要不可欠である。著者らはネール緩和とブラウン緩和の重畳を交流磁化曲線計測及び、パルス磁場を印加することによる二段階の磁化上昇を実験的に観測することで、Rosensweigの示した実効的緩和時間 τ_{eff} がネール緩和時間 τ_N とブラウン緩和時間 τ_B の逆数の和 $1/\tau_{eff} = 1/\tau_N + 1/\tau_B$ で表されるとした理論¹⁾では、表現できない磁気緩和現象を解明した^{2,3)}。また数値シミュレーションにおいても、磁気緩和の重畳は観測されている⁴⁾。本研究では、ネール緩和時間以下の高速で応答するパルス磁場を用いて、磁化の線形応答領域の磁場強度におけるネール緩和とブラウン緩和が重畳した磁化応答を観測し、2 つの緩和過程を分離した解析を行った。

<u>実験方法・結果</u>

純水中に分散した Fe₃O₄ ナノ粒子を試料として、立ち上がり時間は 18 ns、磁場強度は 384 A/m のパルス磁 場を印加した。粒子体積濃度は 1.24v/v%とした。実効的磁化応答 *M*eff(*t*)は、以下の式で表すことができる。

$$M_{\rm eff}(t) = M_{\rm N}(t) + M_{\rm B}(t) = M_{\rm N,max} \left\{ 1 - \exp\left(-\frac{t}{\tau_{\rm N}}\right) \right\} + M_{\rm B,max} \left\{ 1 - \exp\left(-\frac{t}{\tau_{\rm B}}\right) \right\}$$
(1)

ここで、ネール過程 $M_N(t)$ とブラウン過程 $M_B(t)$ の最大磁化をそれぞれ $M_{N,max}$, $M_{B,max}$ としたときに、コア粒径 d_C 、実効的な磁気異方性 K_u 、流体力学的粒径 d_H 、 $M_{N,max}$ に対する $M_{B,max}$ の比率 $M_{B,max}/M_{N,max}$ を見積もった。 緩和時間は、 $\tau_N = \tau_0 \exp(K_u V_M / k_B T)$ 及び $\tau_B = 3\eta V_H / k_B T$ として、ここで τ_0 は磁気回転に関わる試行時間、 V_M はコ ア粒子の体積、 k_B はボルツマン定数、T は温度、 η は溶媒粘度、 V_H は流体力学的体積である。

Figure 1 に計測した磁化 M_{exp} と、計算値である $M_{eff}(t)$, $M_N(t)$, $M_B(t)$ を示した。実測では、ネール過程の後に ブラウン過程が続く二段階の緩和過程が明瞭に観測された。式(1)を用いた計算では、粒径分布を考慮するこ とで良好な実験値へのフィッティングを行えた。最小二乗法により見積もった計算に用いたパラメータは、 $d_c=11.9\pm2.0$ nm, $K_u=18$ kJ/m³, $d_H=40\pm11$ nm, $M_{B,max}/M_{N,max}=3.7$ であった。以上より、式(1)のようなネール緩 和とブラウン緩和の重畳は 2 つの磁化過程の和として表されることを実験的に確認した。本研究では、さら に 2 つの緩和過程の支配度である $M_{B,max}/M_{N,max}$ と緩和時間の関係性についても、粒子濃度を変えた試料につ いて計測を行うことで、双極子相互作用の磁気緩和への影響を合わせて解析した。

<u>謝辞</u>

本研究の一部は、双葉電子記念財団、科研費 15H05764、17H03275、17K14693の助成を受けて 実施した。

<u>参考文献</u>

1) R. E. Rosensweig, J. Magn. Magn. Mater., 252, 370 (2002).

2) S. Ota, T. Yamada, and Y. Takemura, *J. Appl. Phys.*, 117, 17D713 (2015).

3) S. B. Trisnanto, S. Ota, and Y. Takemura, *Appl. Phys. Express*, **11**, 075001 (2017).

4) H. Mamiya and B. Jayadevan, Sci. Rep., 1, 157 (2011).

