FPGA を用いた生体磁気計測用マルチチャンネル MI センサシステムの開発

楊 紫欽、馬 家駒、内山 剛

(名古屋大学)

Development of multi-channel MI sensor system for bio-magnetic measurement based on FPGA Z.Yang, J.Ma, T.Uchiyama

(Nagoya University)

<u>はじめに</u>

MI センサは、磁気センサの一種として、科学計測、工業、生体磁気信号の検出など様々な領域に応用が 検討されている。生体磁気計測方面は、例えば、心臓から発生した空間的な磁場を測るため、マルチチャン ネルシステムの開発が求められている。FPGA(field-programmable gate array)とは、構成の設定ができ、用 途に応じてプログラム可能なゲートアレイの集積回路である。そして、高性能の AD コンバータ LTC2500 を 合わせて利用することにより、高いサンプリング周波数の場合でも低ノイズレベルが得られる。今回は Cyclone V Soc device 型の FPGA を用いて、MI センサの高精度低ノイズレベルのマルチチャンネル計測システ ムを構築することを目的として実験を行った。

<u>実験方法</u>

図1に示した MI グラジオメーター回路による、二つの MI センサのアナログ信号をサンプリングして、その電圧差を AD コンバータに入力する。FPGA のプログラムにより AD 変 換とデータ処理を行って、得られた結果を PC に入力する。

実験結果

FPGA のプログラムにより、高性能の AD コンバータと デジタルフィルタを用いて、磁気シールドの中にサンプリング周波数が

図 1.MI グラジオメーター回路

1KHz の場合でセンサのノイズスペクトラムを測定した。図2に示されるように、1Hz の時はノイズレベルが約2pT、10Hz の時はノイズレベルが1pT 以下となる。続いては環境ノイズの抑制効果を検証した。図3に示されるように、磁気シールドなしの場合で時間領域に環境ノイズはほぼ60Hz の電源ノイズである。デジタルフィルタを利用すると、サンプリング周波数が100Hz の場合で環境ノイズがきれいに除去され、RMS ノイズが約15pT である。結果として、磁気シールドがなくても高精度のサンプリングもできる可能性を示した。

図2.出力信号のノイズスペクトラム

図 3. 環境ノイズの抑制効果

FPGA を用いた適応型 MI センサシステムの開発と AD コン

バータの最適化

史 柯、内山 剛 (名古屋大学) Optimize MI sensor circuit and ADC with FPGA Shi Ke 、T.Uchiyama (Nagoya Univ.)

<u>はじめに</u>

従来の MI センサ回路は S/H 回路によって、電圧信号を取り出しているが、AD コンバータに 回路を接続する場合、AD コンバータの AD 変換動作とサンプリングスイッチの動作部分が重複 し、サンプリングのタイミングによりノイズが混入する可能性がある。したがって、本研究は、

FPGA を利用した MI センサー回路により、 AD 変換動作のタイミングの調整およびア ナログスイッチの動作のタイミングの調 整をともに可能とした、適応型 MI センサ システムの最適化を目指している。

実験方法

FPGA を用いた、MI センサシステムの開 発により、サンプリングスイッチ動作と AD コンバータ動作のタイミングをプログ ラミングにより調整可能とし、SNR を測定 した。

実験結果

Fig. 1 はシステムの構成を示してい る。センサー回路は FPGA により制御さ れ、ADC も FPGA にコントロールされてい る。Fig. 2 はセンサーに振幅 150 p T の 10Hz 正弦磁界を印加した場合の SNR を 示している。実験結果によると、サンプ リングスイッチ動作と AD コンバータ動 作の重複を避けた場合に、ノイズレベル が低いことが明らかになった。

 $MI \tau \tau \tau$

Fig.1 Schematics of the MI sensor systems.

Fig.2 The S/N ratio of the system by frequency analysis.

 Shingo Tajima, et al., "High Resolution Magneto-impedance Sensor with TAD for Low Noise Signal Processing,"
Proc. IEEE INTERMAG, 2014.

フリップチップボンディングによる高周波駆動薄膜磁界センサ

工藤春陽, 植竹宏明*, 小野寺英彦**, トンタット ロイ, 薮上 信, 早坂淳一*, 荒井賢一* (東北大学,*電磁材料研究所,**東北学院大学)

Flip-chip bonded high-frequency thin-film magnetic field sensor

H. Kudo, H. Uetake^{*}, H. Onodera^{**}, L. Tonthat, S. Yabukami, J. Hayasaka^{*}, K. I. Arai^{*} (Tohoku University, *Research Institute for Electromagnetic Materials, **Tohoku Gakuin University)

フリップチップボンディングにより実 はじめに 装したコプレーナ構造の高周波駆動薄膜センサを開 発し,磁性薄膜の膜厚と位相変化感度,および低周波 磁界検出について検討した.

計測方法 Fig.1に直線コプレーナ線路により構成 される薄膜センサの構造を示す ¹⁾. センサ素子はガラ ス基板上(25 mm×25 mm, 1 mm 厚)にアモルファス CoNbZr 薄膜(18.2 mm×1.15 mm)を RF スパッタによ り成膜し, SrTiO 薄膜を介して Cu 薄膜によるコプレ ーナ線路(長さ19.8 mm, 0.3 mm 幅, ギャップ 0.05 膜厚 4 μm) をそれぞれリフトオフにより加工 mm, した. コプレーナ端部の電極はフリップチップボンデ ィングにより基板へ実装した. CoNbZr 薄膜は回転磁 界中熱処理(300℃,2時間 0.3 T)の後,静磁界中熱 処理(300℃,1時間 0.3 T)を施し、コプレーナ幅方 向に異方性を付与した.キャリア信号はコプレーナ導 体を流れ, CoNbZr 薄膜に通電しない. センサの評価 は磁界をコプレーナ長手方向へ, ヘルムホルツコイル で 0-10 Oe の範囲でゆっくり変化させ, ネットワーク アナライザ (R3767CG) の透過法測定によりキャリア の位相変化を S21 から求めた. 周波数範囲は 0.3 MHz -4 GHz とし、バンド幅は1 kHz、平均化回数は16 回 とした.

計測結果 Fig. 2 に Fig. 1 のボンディング実装後の センサについて、CoNbZr 薄膜の膜厚とキャリアの外 部磁界に対する位相変化の傾き(感度)の関係を示す. センサ素子はそれぞれの膜厚で約10個試作した.キ ャリアのゲインは-40 dB 以上の範囲とした. 位相変化 感度は CoNbZr 膜厚が1 μm のときに最も高かった. これは磁化が面内磁化回転を得られやすいことを反 映していると考えられる. ウエハプローブを用いて測 定したボンディング前の同センサにも同様の傾向が 見られた.これはフリップチップボンディングにより インピーダンス整合がおおむね維持されるため高感 度な周波数帯等の変化が小さかったためと考えられ る. ボンディング後の最高感度は 295.8 deg/Oeで, キ ャリア周波数は1670 MHz, 外部磁界は4.5 Oe となっ た. 次に, 高速 AD コンバータ (FPGA 搭載, NI 5734) を用いてデータを高速で処理し、センサに微弱磁界が 加えられたときのキャリアの振幅変化を測定した. Fig. 3 にセンサへ 20 Hz, 2.7 × 10⁻⁹ Tの微弱磁界を与 えた時のセンサ出力のスペクトルを示す. ノイズレベ

Fig. 2 Phase change as a function of thickness of CoNbZr film.

6

CoNbZr thickness (µm)

8

10

12

50

Fig. 3 Signal and noise of sensor when a small AC field (2.7 nT and 20 Hz) was applied.

参考文献 1) H. Uetake, S. Yabukami et al. J. Magn. Soc. Jpn, 38 (3-1). pp. 83-86 (2014)

ルは 20 Hz 付近でおおよそ 100 pT/√Hz 程度となっ t.

高周波近傍磁界測定における新しい同期手法の提案

立岡大青,石田竜太,枦修一郎,石山和志

(東北大学電気通信研究所)

Proposal of new synchronization method in high frequency near magnetic field measurement D. Tatsuoka, R. Ishida, S. Hashi, K. Ishiyama

(RIEC Tohoku University)

1. はじめに

高周波近傍磁界計測用プローブとして一般的にループコイルが用いら れている¹⁾が、金属製のため本来の磁界分布を乱してしまう²⁾。そのため本 研究では、金属プローブに比べ磁界を乱しにくい磁気光学結晶のガーネッ トとパルスレーザを利用し、ストロボ法により交流磁界の位相情報を含め て低侵襲に測定可能な高周波近傍磁界計測システム³⁾について検討を行っ ている。ストロボ法を使う上ではレーザのパルス発振と被測定信号の同期 が必要である。先行研究では基準となる同期信号を準備しそれを用いて被 測定磁界とレーザ発振を同期させていた。本研究では、被測定磁界を発生 させるマイクロストリップライン(MSL)の通電信号をレーザ発信トリガ信 号として用いる手法を試みる。先行研究³⁾のとおり被測定磁界周波数は数 GHz帯であり、かつレーザパルス周波数の整数倍であるため、分周器を用 いて低周波数化するとともに増幅してレーザ発信のためのトリガ信号とし た。

Fig.3 Waveform for laser trigger signal

2. 実験方法

Fig.1 に本研究における磁界測定装置の概略を示す。被測定対象磁界を 発生するMSLの近傍に配置したガーネットにレーザ光を垂直に照射し反 射光を検出する。反射光はガーネットの磁気光学効果により、垂直磁界強 度に依存した偏光状態の変化が起こるため、それを検出することで垂直方 向成分の磁界強度が測定できる。今回は検証実験として信号発振器からの 高周波信号を被測定対象より発生する信号と見立てレーザに入力する。ま

た、この信号をレーザの発振可能周波数帯及び電圧レベルにするため、5.12GHzの信号を分周器にて 1/64 分 周するとともに増幅し、80MHzのレーザの発振トリガ信号を生成した。また、発生磁界の特定位相でレーザ を発振させるストロボ法では、レーザの発振タイミングの時間的ずれであるジッターが、測定の正確性に大 きく影響を及ぼす。今回は分周器、アンプによるジッターの増加が見込まれるため、作成したレーザの発振 トリガ信号のジッターに特に着目して測定を行った。

3. 実験結果

信号波形をオシロスコープにて観測した結果、波形のタイミングジッターはFig.3 より 50psであった。 5.12GHzの周期が 200psであることから、本手法でもストロボ法での位相レベルの判断が可能であるため、 レーザの発振トリガ信号として使うに妥当であり、磁界計測が可能であると考えられる。この手法を用いた 磁界計測結果については講演会で報告する。

参考文献

- R. Paul: Introduction to Electromagnetic Compatibility 2nd edition, pp. 10-11, John Wiley, NewYork (2006).
- M. Takahashi, K.Kawasaki1, H.Ohba, T.Ikenaga, H.Ota, T.Orikasa, N.Adachi, K.Ishiyama and K.I Arai J. Appl. Phys. 107, 09E711 (2010).
- 3) H. Nasuno, S. Hashi, and K. Ishiyama IEEE Trans . vol 47, NO. 10, Oct. 2011

フレキシブルマイクロストリップ線路型プローブによる磁性薄膜の 67 GHz までの高周波透磁率測定

能澤昂平,沖田和彦,トンタットロイ,薮上信,遠藤恭,島田寛*,斉藤伸,内海良一* (東北大学,*東栄科学産業)

Permeability Measurements of Thin Film Using a Flexible Microstrip Line-Type Probe Up To 67 GHz K. Nozawa, K. Okita, L. Tonthat, S. Yabukami, Y. Endo, Y. Shimada* S. Saito, R. Utsumi* (Tohoku University, *Toei Scientific Industrial co., ltd,)

<u>はじめに</u>

高周波透磁率の測定は磁性材料の高周波応用に不可欠である.著者らはフレキシブルマイクロストリップ線路型(以下 MSL と略)プローブを開発し,磁性薄膜の 40 GHz までの透磁率計測方法を報告した¹⁾. 今回プローブの小型化,強磁場印加等により 67 GHz までの広帯域化に成功したため報告する.

<u>計測方法</u>

測定対象には一軸異方性を付与した CoFeB 薄膜²⁾を用いた. ヘルムホルツコイルの磁場と試料の容易軸, MSL プローブの長さ方向がそれぞれ平行になるように設置し, 試料と MSL は PET フィルム (100 μ m)を介して近接配置した. Fig. 1 のようにネットワークアナライザで透過係数 S_{21} を測定し, 等価インピーダンスを100(1 – S_{21})/ S_{21} とした. 比透磁率は, 強磁場 (2.00 T) 印加状態で校正し測定磁場との差分をとることでインピーダンス変化を求め,表皮効果を考慮し Newton-Raphson 法で最適化した¹⁾.

<u>計測結果</u>

Fig. 2 に直流磁界 14.0 kOe を磁化容易軸方向へ印 加した時の磁化困難軸方向の比透磁率を示す.g因 子を2.12 とすると,Landau-Lifshitz-Gilbert 方程式の 渦電流損を考慮した理論値と概ね一致した.Fig.3 に 共鳴周波数と直流磁界の関係を示す.ネットワーク アナライザの測定限界である 67 GHz まで比較的良 好な共鳴周波数の一致が見られた.

<u>謝辞</u>

CoFeB 薄膜をご提供頂きました崇城大学の宗像誠 教授に感謝致します.本研究の一部はビジネス・イ ンキュベーション・プログラムの研究成果である.

<u>参考文献</u>

- S. Yabukami et al., J. Magn. Soc. Jpn., 41, 25-28 (2017).
- M. Namikawa et al., J. Magn. Soc. Jpn., 27, 371-374 (2003).

Fig. 1 Schematic diagram of permeability measurement system.

Fig. 2 Relative permeability of CoFeB film (H_{dc}=14.0 kOe)

Fig. 3 Ferromagnetic resonance (FMR) frequency as a function of bias field.