Development of fundamental technologies for motors in Technology Research Association of Magnetic Materials for High-Efficiency Motors (MagHEM).

Yoshinari Asano, Yoshihito Sanga, Shintarou Araki, Michihiro Nakagawa, Akio Yamagiwa (Daikin Industries, Ltd.) Shigeo Morimoto, Masayuki Sanada, Yukinori Inoue (Osaka Prefecture University)

The Technology Research Association of Magnetic Materials for High-Efficiency Motors (MagHEM) was founded in 2012 to develop the innovative high-performance magnets without/less rare-earth materials which exceed current magnets with rare-earth materials in performance, the high-efficiency soft magnetic materials (Iron core) for internal loss reduction, and compact high-efficiency motors.

Targets of R&D are new magnets exceeding Neodymium magnets with 2 times in (BH)max (180°C), and high efficiency motors with 40% reduction in loss, 40% improvement in power density using new magnets.

This paper investigates the performance of three modified versions of IPMSMs typically used in automotive applications and compares them with a reference model. The modified IPMSMs use a strong magnet model designed to have the properties of NdFe12Nx, which is a novel hard-magnetic compound developed by Hirayama et al. (1). Table I shows the motor specifications, and Fig. 1 shows the cross-sectional analysis model with three types of rotor structures(2)(3). Model B and model C achieved the target of motor in FEA, and model C could meet the strength to centrifugal force.

Acknowledgments

This article is based on results obtained from the Future Pioneering Program "Development of magnetic material technology for high-efficiency motors" commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

- 1) Y. Hirayama, Y.K. Takahashi, S. Hirosawa, and K. Hono: "NdFe12Nx Hard-Magnetic Compound with High Magnetization and Anisotropy Field", MATERIALIA, Vol.95, pp.70–72 (2015)
- Y. Shimizu, S. Morimoto, M. Sanada, Y. Inoue: "Influence of Permanent Magnet Properties and Arrangement on Performance of IPMSMs for Automotive Applications", IEEJ Journal of Industry Applications, Vol.6 No.6 pp.1-8(2017)
- R. Imoto, M. Sanada, S. Morimoto, Y. Inoue: "Study on Mechanical Strength Improvement of Rotor in Compact and High Speed 2-layer IPMSM for HEV Applications", 2018 Kansai Joint Convention of Institutes of Electrical Engineering, G4-17 (2018)

TABLE I MOTOR SPECIFICATIONS

		Reference model	Model A	Model B	Model C	
Number of pole/slot		8/48				
Stator diameter (mm)		264		210		
Stack lengsh (mm)		50		54		
Maximus speed (p.u.)		1		1.8		
Rotor Structure		1 V	2D			
Iron core	B ₅₀ (p.u.)	1	0.888			
	W _{10/50} (p.u.)	1	0.556			
	Yield stress(p.u.)	1	1.5			
PM material	Remanence (140°C) (T)	1.04	1.39			
	Coercivity (kA/m)	784	1052			
	Wolume (cm ³)	100		69		

Fig.1. Rotor structure and result of analysis

Development of Nd reduced high coercivity magnet and expectation for future research

Tetsuya Shoji

Toyota Motor Corporation, Advanced Material Engineering Div. Technology Research Association of Magnetic Materials for High-Efficiency Motors (MagHEM)

1.Background

Recently, vehicle electrification expands rapidly. It is well known that electrified vehicle has additional component compare to conventional gasoline vehicle, i.e. battery, inverter and electric motor. At this moment, supply and demand seems to be acceptable for all additional electric component. However, most of future forecast says that amount of electrified vehicle become two to five times larger than current vehicle sales. This means that we need number of electrified unit, at least, more than two times compare to current demand. For example, IEA scenario described in Energy Technology Perspective 2017 forecasts electrified vehicle increase from 14 million in 2020 to 40 million in 2030 [1]. When we look at even only around vehicle technological shift, it is easy to forecast enormous number of rare-earth magnet will be needed. From this circumstance, we research coerciviy mechanism of rare-earth magnet and consider what we can do for balancing global supply and demand of rare-earth materials. In these ten years, we discovered molten Nd based alloy with low melting point infiltrate spontaneously into bulk magnet and enhance coercivity in 2010[2,3]. Using established technique, we vary coercivity by varying nano-structure of magnet samples for understanding coercivity mechanism. From our research activity, we successfully fabricate relatively high coercivity magnet than expected from rare-earth composition, at that moment we focused on Nd-Ce, in 2013[4,5]. Then we move to investigate intrinsic properties to understand role of rare-earth element for magnetization and curie temperature. All attempts that we made for understanding coercivity mechanism [6,7,8] inspire ideas for development of Nd reduced high coercivity magnet to us.

2. How to realize high coercivity with reduced Nd amount

In order to reduce Nd from NdFeB magnet, we focused on light rare earth (here after LRE) Lanthanum and Cerium. It is well known that adding substituting from Nd to LRE, both magnetization and anisotropy are weakened and performance get worse. Therefore, we noticed mechanism of magnetic properties and combining three techniques, two for nano-structural control and one for alloying technique, for exhibiting high performance even using LRE element [9]. For enhancing coercivity, we control nano-sturcuture of magnet, grain refinement, include magnetic insulation between main phase grains, and Core/Shell structure of grains. When we noticed coercivity model, i.e. Kronmuller's micro-magnetics model, $Hc = \alpha H_a - N_{eff} M_s$. One can easily understand increasing α parameter and/or decreasing N_{eff} work for enhancing coercivity. In this development, we employ grain refinement and magnetic insulation for improving N_{eff} , smaller is better in this case. Furthermore, we put magnetically harder shell, Nd enriched RE₂Fe₁₄B phase, for each grain.to enhance α value. From TEM/EDX observation, one can easily found that Nd enriched region located at surface of each grains and poor in inside grain. This nano-structural control is same as former work reported Ito et al [5]. For improving magnetization, we adopt compositional design for magnet. We start with Nd-Ce alloyed RE₂Fe₁₄B phase, it is well known that magnetization decrease with alloying Ce to RE₂Fe₁₄B phase. In order to slowing deterioration of magnetization by Ce, we focused on La as co-alloying element. Co-alloying La to Nd-Ce seems to have good effect to magnetization relative amount of LRE element of RE₂Fe₁₄B phase.

3. Performance of magnet and discussion

Temperature dependence of coercivity of Nd reduced high coercivity magnet are shown in Fig.1. Comparing NdFeB and Ce alloyed and Ce-La co-alloyed magnet, temperature dependence of coercivity, LRE alloyed magnets, Ce alloyed and Ce-La co-alloyed magnet, are better than NdFeB magnet especially in temperature range around 373K. From Fig.1, Nd infiltrated samples show higher coercivity, therefore it seems that Nd enriched shell harden grain

surface magnetically and enhance coercivity. In Fig.2, Temperature dependences of normalized magnetization of various sample with different composition are shown. Magnetizations are normalized by room temperature value and several Nd reduced composition samples are plotted. When we look at temperature dependence of magnetization, $Ce_2Fe_{14}B$ has worst temperature dependence. When we add La to $Ce_2Fe_{14}B$, temperature dependence, or curie temperature, drastically improved, even though La destabilize $RE_2Fe_{14}B$ phase. This behavior is same as Nd alloying to $Ce_2Fe_{14}B$. Finally, we co-alloy Ce and La to $Nd_2Fe_{14}B$, temperature dependence of magnetization seems to have peak in certain ratio of Ce and La, or La improve magnetization in elevated temperature. From our experimental results, temperature dependence of both coercivity and magnetization seems to be affected by LRE alloying.

Fig.1 Temperature dependence of various magnet coercivity. Sample name correspond to RE composition. Sample with NdCu infiltration. Infiltration condition is 853K 165min.

Fig.2 Temperature dependence of normalized magnetization. Sample name correspond to RE composition

Acknowledgement

This work was partly supported by the future pioneering program Development of Magnetic Material Technology for High-efficiency Motors commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

- 1) Energy Technology Perspective 2017; IEA
- 2) Patent: JP 5196080
- 3) H. Sepehri-Amin et al; Acta Materialia 61 (2013), pp. 6622-6634
- 4) Patent: JP 6183457
- 5) M. Ito et al; AIP Advances **6**, 056029 (2016);
- 6) S. Bance et al; Journal of Applied Physics **116**, 233903 (2014);
- 7) S. Bance et al; Appl. Phys. Lett. 104, 182408 (2014);
- S. Bance et al; Hard magnet coercivity, Proceedings of the 23rd International Workshop on Rare earth and Future Permanent Magnets and Their Appications (REPM2014),
- 9) Toyota Global News Room, Feb. 20th, 2018, URL: https://global.toyota/en/newsroom/corporate/21139684.html

Powder neutron diffraction study for magnetism of rare-earth in (Nd,Ce,La)₂Fe₁₄B

Takafumi Hawai¹, Masao Yano², Tetsuya Shoji², James Hester³, Kanta Ono¹ (¹KEK, ²Toyota Motor Corp, ³ANSTO)

Introduction

To reduce expensive Neodymium in rare-earth magnets Nd₂Fe₁₄B without decrease of magnetic properties, cheap Cerium is paid attention. In general, the Ce atom is in non-magnetic Ce⁴⁺ state. However, when the magnetic Ce³⁺ state is stable, the Ce should work as a substitution for Nd. Previous research reported that the larger ionic radii rare-earth prefer the larger cell volume [1]. The magnetic Ce³⁺ state has larger atomic radii (1.15 Å) than that of Ce⁴⁺ state (1.01 Å) [2]. Therefore, the La (1.17 Å) is doped as a spacer to stabilize the Ce³⁺ state. Previous powder neutron diffraction study reported that Ce atom in (La,Ce)₂Fe₁₄B has no moment [3]. Following the previous results, in this study, powder neutron diffraction experiments were performed on (Nd,Ce,La)₂Fe₁₄B to evaluate the rare-earth moment and the Ce state.

Experimental

The powder samples of Nd₂Fe₁₄B, (Nd_{0.75}Ce_{0.225}La_{0.075})₂Fe₁₄B, (Nd_{0.5}Ce_{0.375}La_{0.125})₂Fe₁₄B, and Ce₂Fe₁₄B were measured. The mass of samples is 5g each. Diffraction patterns were gathered on the Echidna – High-Resolution Powder Diffractometer in Australia's Nuclear Science and Technology Organization (ANSTO). Natural boron was substituted with ¹¹B due to strong neutron absorption. The wavelength of the neutron is 2.44 Å.

Results

Figure 1 shows an observed diffraction pattern of (Nd_{0.5}Ce_{0.375}La_{0.125})₂Fe₁₄B together with a result of Rietveld analysis. The experimental data was well explained by the calculated pattern. Figure 2 shows the obtained Nd content dependences of rare-earth moments. The moment sizes change linearly at Nd 70 % compounds. In contrast, at Nd 50 %, the moment size of 4g site deviates from linear change and increases. The reported rare-earth moments in (Nd,Ce)₂Fe₁₄B, shown as open triangles in Fig. 2, quickly decreases with decreasing Nd content [3]. This result suggests that some Ce atoms in 4g site are magnetic Ce³⁺ state instead of non-magnetic Ce⁴⁺ state thanks to the La atom spacer. The details will be discussed.

Fig. 1: The diffraction pattern of (Nd_{0.5}Ce_{0.375}La_{0.125})₂Fe₁₄B together with Rietveld refinement results at 300 K.

- 1) K. Saito, et al., J. Alloy. Compd. 721, 476 (2017).
- 2) R. D. Shannon, Acta Crystallographica A32, 751 (1976).
- 3) C. V. Colin et al., APL 108, 242415 (2016)

Fig. 2: The Nd content dependence of rare-earth moments at 4f and 4g site. The Moments shows here are normalized by the Nd moments of Nd₂Fe₁₄B.

High-resolution synchrotron X-ray powder diffraction study of lattice constants of Nd₂Fe₁₄B phase in Nd-Fe-B sintered magnets

S. Kobayashi^{1,2}, A. Martin-Cid^{1,2}, K. Toyoki^{1,2}, H. Okazaki^{1,2}, S. Hirosawa² and T. Nakamura^{1,2}

¹Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, 679-5198, Japan.

²Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan.

[Purpose]

The high-performance Nd-Fe-B magnets have been receiving considerable attention due to their outstanding magnetic properties. Owing to large magnetic moments of Fe atoms, the main phase of Nd₂Fe₁₄B exhibits large spontaneous volume magnetostriction of about 2%. In addition, the spontaneous magnetostriction is highly anisotropic as shown in Fig. 1. Andreev *et al.* have reported that the linear spontaneous magnetostrian along the *a*-axis (λ_a) is about 4.5 times larger than that along the *c*-axis (λ_c).¹⁾ However, Yang *et al.* have reported that λ_a is only 1.7 times larger.²⁾ It is very curious to find out the clear reason for this discrepancy, since magnetostriction should be intrinsic properties related to magnetization and magnetoelastic-coupling coefficients. In our previous study, ³⁾ we showed the temperature dependences of the lattice constants for each constituent phase in a Nd-Fe-B-Cu anisotropic as-sintered magnet and found that they change differently from those expected for the pristine metal or compounds. This result indicates that lattice constants are influenced by some additional factors. In order to acquire a better understanding about the changes in the lattice constants, we have conducted high-resolution synchrotron XRD measurements in several kinds of samples. [Experimental]

Isotropic and anisotropic Nd-Fe-B-Cu as-sintered magnets, their powdered samples, and powdered single crystals were used in this study. The preparation methods have been already reported.^{3,4)} The synchrotron XRD measurements of as-sintered magnets were conducted using rectangular rod-shaped samples ($0.2 \times 0.2 \times 5 \text{ mm}^3$). Synchrotron XRD profiles were collected at the BL02B2 beamline at SPring-8.

[Results]

Above $T_{\rm C}$, the lattice constants of the Nd₂Fe₁₄B phase in as-sintered magnets, their powdered samples, and powdered single crystals showed a similar temperature variation. Lattice constants of all the samples exhibited a clear anomaly around the same temperature of $T_{\rm C} \simeq 580$ K and exhibited an invar-like expansion below T_C, which is similar to previous reports [see Fig. 1].^{1,2)} Interestingly, the behaviour of the lattice constants below $T_{\rm C}$ was different, and the a-axis increased and c-axis decreased in the following order: the isotropic as-sintered magnet, anisotropic as-sintered magnet, their powdered samples, and powdered single crystals. In addition, a broadening of the diffraction peaks was observed for isotropic and anisotropic as-sintered magnets below $T_{\rm C}$, while this broadening was negligibly small for powdered samples. The Williamson-Hall analysis clarified that the origin of the peak broadening was likely due to internal lattice strain in the sintered magnets. These results indicate that there exists an anisotropic stress applied to the Nd₂Fe₁₄B crystal grains in the sintered magnets. Our experimental results settled the problem of discrepancy in λ_a/λ_c .

We thank T. Nishiuchi of Hitachi Metals, Ltd. for supplying the samples. A part of this work is supported by ESICMM under the outsourcing project of MEXT.

References

A.V. Andreev *et al.*, Sov. Phys. Solid State. 27, 987 (1985).
N. Yang *et al.*, J. Magn. Magn. Mater. 295, 65 (2005).
N. Tsuji *et al.*, Acta Mater. 154, 25 (2018).
S. Hirosawa *et al.*, J. Appl. Phys. 59, 873 (1986).

Fig.1 Temperature variation of lattice constants of Nd₂Fe₁₄B in isotropic Nd-Fe-B-Cu as-sintered magnets in comparison with previous reports.¹⁾

Microstructure and coercivity of grain boundary diffusion processed Dyfree and Dy-containing Nd-Fe-B sintered magnets

 T.-H Kim¹, T. T. Sasaki¹, T. Ohkubo¹, Y. Takada², A. Kato³, Y. Kaneko², and K. Hono¹
¹Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, Tsukuba-city, Ibaraki 305-0047, Japan
²Toyota Central R&D Labs., Inc., 41-1, Nagakute 480-1192, Japan
³Toyota Motor Corp., Advanced Material Engineering Div., Susono 410-1193, Japan

Achieving a high coercivity, $\mu_0 H_c$, above 3.0 T at room temperature is important for Nd-Fe-B permanent magnets for the application to traction motors of electric vehicles and wind turbines to avoid thermal demagnetization. Grain boundary diffusion (GBD) is promising to achieve the high coercivity without the significant loss of remanence that cannot be avoided with Dy alloying. In the GBD process, heavy rare-earth element (HRE) is diffused from the surface of the bulk along the grain boundaries, thereby forming HRE-rich shell on the surface of the Nd₂Fe₁₄B main phase.

This contributes to the coercivity increment. However, the coercivity cannot reach 3.0 T by the GBD process alone unless the initial sintered magnets are alloyed with Dy; a substantial amount of Dy must be alloyed in the base magnets in order to achieve the high coercivity of 3.0 T after the GBD process¹). In the present study, we investigated the magnetic and

microstructural characteristics of the GBD processed Dy-free and Dycontaining sintered magnets in order to understand the origin of the high coercivity of 3.0 T.

A GBD process was applied to two different sintered magnets with the chemical composition of $Nd_{14.3}Fe_{78.15}B_{6.0}Cu_{0.1}Al_{0.4}Co_{1.0}Ga_{0.05}$ and $Nd_{11.2}Dy_{3.1}Fe_{78.15}B_{6.0}Cu_{0.1}$ Al_{0.4}Co_{1.0}Ga_{0.05} (at.%). The Dy-free and Dy-containing samples have the coercivity of 0.64 and 2.29 T before the GBD process. They were kept in Dy-vapor at 950 °C for 4 h for the GBD treatment followed by the post-diffusion annealing at 520 °C for 1 h. The Dy distributions in these magnets have been investigated via the use of SEM (Carl Zeiss Cross beam 1540EsB) and TEM (FEI Titan G2 80-200).

The coercivity increment, $\Delta \mu_0 H_c$, by the GBD treatment for the Dycontaining magnet was only 0.08 T, which was much smaller than that for the Dy-free magnet of 0.87 T due to the discontinuity of the Nd-rich GB

phase in the Dy-containing magnet (Fig. 1). After the subsequent post-diffusion annealing, a substantial coercivity increase was observed, and the $\mu_0 H_c$ of the Dy-containing magnet reached 3.05 T while that of the Dy-free magnet saturates at 2.29 T. One reason for the 3T coercivity in the Dy-containing sample is the formation of the thick GB phase with high Nd content.

Interestingly, we found the formation of a "secondary Dyrich shell" within the well-known primary Dy-rich shell²⁾. The Dy element enriched in the Nd-rich GB phase during the GBD treatment is diffused into the main phase to form the secondary Dy-rich shell during the post-diffusion annealing. Such a secondary Dy-rich shell gave additional rise in the coercivity to 3T due to the increase in the Dy content at the GB phase/(Nd,Dy)₂Fe₁₄B interface.

- 1) S.-E. Park et al., IEEE Trans. Magn, 47 (2011) 3259-3262
- 2) T.-H. Kim et al., Acta Mater. 175 (2019) 139-149

Fig. 1: $\Delta \mu_0 H_c$ of Dy-free and Dycontaining magnets with GBD process steps. For comparison, $\Delta \mu 0$ Hc of magnets annealed without undergoing the GBD treatment are also displayed.

Figure 6: HAADF-STEM image and corresponding EDS elemental maps, and EDS line profiles across GB phase in (a) GBD treated and (b) post-diffusion annealed Dy-free magnet. (c) schematically shows the change in Nd and Dy concentration before and after the post diffusion annealing.

Improved coercivity and squareness in bulk hot-deformed magnets by two-step grain boundary diffusion process

Xin Tang,¹ J. Li,¹ H. Sepehri-Amin,¹ T. Ohkubo,¹ K. Hioki,² A. Hattori² and K. Hono¹ ¹Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan ²Daido Corporate Research & Development Center, Daido Steel Co., Ltd.

In order to use Nd-Fe-B based permanent magnets for the traction motor of hybrid (electric) vehicles, a coercivity of 0.8 T is required at 160 °C to avoid their thermal demagnetization during operation. To meet this requirement, grain boundary diffusion of RE-based eutectic alloys is employed to improve the coercivity in the hot-deformed magnets. ¹⁾ Recently, Li *et al.* reported a coercivity of ~2.57 T with remanence of 1.38 T in a 2-mm-thick hot-deformed magnet by the grain boundary diffusion of Tb-Nd-Cu alloy. ²⁾ However, such high performance was demonstrated only using a small piece of samples with a thickness of ~2 mm and a question is whether or not we can apply the process to large bulk samples. Previous reports on conventional Dy-vapor diffusion process in micron-grain sized Nd-Fe-B sintered magnets has shown that the limited diffusion depth results in a poor squareness of demagnetization curves. ³⁾ In this work, we investigated the method to improve the squareness of demagnetization curves of Nd-HRE-Cu eutectic-diffusion processed 5.6-mm-thick hot-deformed magnets.

The hot-deformed Nd-Fe-B-based magnets with composition of Fe_{67.1}Pr_{6.7}Nd_{21.2}Co_{3.5}Ga_{0.5}B₁ (wt.%) were used as starting materials. The samples of $\times 7 \times 5.6$ (c-axis) mm³ in size were covered by the 12 wt.% Tb₂₀Dy₁₀Nd₄₀Cu₃₀ ribbons (with respect to mass of hot-deformed magnet) followed by annealing at 750°C for 1.5 h and post-annealing at 650°C for 9h, which is called as "one-step diffusion process". In comparison, the two-step diffusion process was carried out as follows: the initial samples were covered by the 10 wt.% Tb₂₀Dy₁₀Nd₄₀Cu₃₀ ribbons (with respect to the mass of hot-deformed magnet) followed by annealing at 750°C for 1.5 h. Thereafter, the surface of the magnet was polished and the magnet was again covered by 6 wt.% of Nd₈₀Cu₂₀ alloy ribbons followed by heat-treatment at 650°C for 9 h. The magnetic properties were studied by pulse BH-tracer.

Fig. 1 shows the demagnetization curves of the one-step and the two-step diffusion processed samples. The coercivity is improved from ~1.14 T in the as-deformed sample to ~2.38 T while remanence degrades from ~1.49 T to ~1.28 T after one-step diffusion procession. In contrast, the coercivity is enhanced to 2.43 T with remanent magnetization reduction to ~1.29 T by the two-step diffusion process. The squareness factor of demagnetization curve is defined as $\mu_0 H_k/\mu_0 H_c$, where $\mu_0 H_k$ is the absolute value of external field when the magnetization equals to 90% of remanent magnetization ($\mu_0 M_r$) and $\mu_0 H_c$ is the coercivity of the sample. The squareness factor was calculated to be ~0.83 for the one-step diffusion processed sample, which is improved to ~0.91 after the two-step diffusion. The origin of the obtained magnetic properties will be discussed based on detailed microstructure characterization.

- 1) H. Sepehri-Amin, et al., Acta Mater. 61 (2013) 6622-6634.
- 2) J. Li, et al., Acta Mater. 161 (2018) 171-181.
- 3) K. Löewe, et al., Acta Materialia 83 (2015) 248-25.

Fig. 1 Demagnetization curves of hot-deformed magnets and diffusion-processed magnets

Theoretical study on the magnetization reversal of rare-earth magnets at finite temperature

A. Sakuma¹,Y. Toga^{2,3},T. Miyake^{3,4}, and S. Miyashita^{3,5,6} (¹Tohoku University, ²NIMS, ³ESICMM, ⁴AIST, ⁵The University of Tokyo, ⁶JPS)

In viewpoints from both the energy-efficiency and environment problems, the development of highperformance Nd-Fe-B permanent magnets is strongly desired especially for electric vehicles. It has so far been recognized that one of the important issues to be overcome is suppressing the thermal degradation of their coercivity, $H_{\rm C}$. As a measure, Dy is currently substituted for part of Nd in Nd-Fe-B sintered magnets. However, this is unfavorable because Dy is expensive and the magnetization decreases owing to the antiparallel coupling between Dy and Fe moments. For these reasons, the microscopic foundations for the magnetization reversal mechanism of Nd-Fe-B magnets are sincerely needed and many theoretical works have been done intensively based on several different approaches.

A direct way to study the hysteresis loop is to employ the Langevin equation so-called stochastic LLG equation which takes into account the thermal fluctuation.¹⁾ However, the method consumes much computation time to reach the observation time of a few seconds. Alternatively, to handle such a slow relaxation process, usage of the free energy landscape is useful and appropriate. Actually, the magnetization reversal can be interpreted as the transition from metastable magnetic state to a stable state by overcoming the free energy barriers under a reverse magnetic field. The reverse nucleus is formed in this process. To deal with such processes at finite temperature, one needs to evaluate the free energy landscape instead of searching the energy minimum path.²⁾

Recently, we³⁾ have succeeded, for the first time, to calculate the free energy $F(T, H_z, M_z)$ of a finite-size particle of Nd₂Fe₁₄B as functions of temperature (*T*), external magnetic field ($H_z < 0$) and the z-component of the total magnetic moment (M_z) with using replica-exchange Wang-Landau method.⁴⁾ This method enables us to evaluate the $F(T, H_z, M_z)$ with using only the magnetic parameters at zero temperature such as the local magnetic moments (M_i), exchange interactions (J_{ij}) between them and the anisotropy constants (crystal field parameters) all of which can be determined by the first principles calculation.⁵⁾

Figure 1(a) shows the spatial distribution of the reversed magnetization around the barrier as shown by the arrows in Fig. 1(c). In Fig. 1(b), we show the averaged magnetization density. From these data one can find that the reverse begins at the corner because of the weak exchange field, and then the domain wall propagates toward the center of the particle. Once the $F(T, H_z, M_z)$ is obtained as in Fig. 1 (c), we can calculate, without using any empirical parameter, the energy barrier $F_B(T, H_z)$, activation volume $V_a(T, H_z)$ and viscosity coefficient (fluctuation field) $S_v(T, H_z)$. Taking account of the thermal fluctuation, the coercivity H_C in the observation time of one second can be determined from the relation $F_B(T, H_C) = 25.3k_BT$. Further, we have demonstrated both analytically and numerically that $V_a(T, H_z)$ which is defined as a volume swept out between minimum and maximum energy positions of the domain wall⁶⁰ (corresponding to ΔM_z in Fig. 1(c)) is always given by $-(\partial F_B/\partial H_z)/M_S$, regardless of the form (magnetization reversal model) of $F_B(T, H_z)$. From the data, we found that the $V_a(T, H_z)$ drops sharply with increasing H_z in a low H_z region and goes to a certain constant value as H_z approaches to H_C . This implies that $F_B(T, H_z)$ is approximately proportional to $(1 - H_z/H_0)^n$ with n close to unity when $H_z \simeq H_C$, while, for H_z much smaller than H_C , n is larger than 2. The result $F_B \propto (1 - H_z/H_0)^n$

al.⁸⁾ The physical interpretation for $n \simeq 1$ (V_a is nearly independent of H_z) will be given in the conference.

Fig. 1 Free energy landscape simulation of surface nucleation.(a) Snapshots of distributions at the three magnetization points i - iii in the free energy landscape (Fig. 1(c)) simulated by the replica exchange Wang-Landau method for the Nd₂Fe₁₄B isolated particle spin system, whose size is 14.1nm ×14.1nm ×14.6nm (212,536 spins). The dots of each color denote reversed Fe spins in each snapshot. (b) The distributions sliced by (110) plane of the possibility of spin reversal P_d at Fe sites. (c) Free energies as a function of the *z*-component of the total magnetic moment M_z at $0.46T_C^{cal}$. The blue and green lines are the results of applying reverse magnetic fields H_z along -z direction to the red line.

- 1) M. Nishino et al., Phys. Rev. B 94 (2017) 094429.
- 2) R. Dittrich et al., J. Magn. Magn. Mater. 250 (2002) 12.
- 3) Y. Toga et al, in preparation for submission.
- 4) T. Nogawa et al., Phys. Rev. E 84 (2011) 061107.
- 5) Y. Toga et al., Phys. Rev. B 94 (2016) 174433.
- 6) P. Gaunt, J. Appl. Phys. 59 (1986) 4129.
- 7) D. Givord et al., J. Magn. Magn. Mater. 67 (1987) L281.
- 8) S. Okamoto et al., J. Appl. Phys. 118 (2015) 223903.

Recent progress in studies on crystalline phases and magnetic domain structures in high coercivity permanent magnets using synchrotron X-rays

T. Nakamura^{*}

(JASRI, *ESICMM)

In the last three decades, synchrotron X-rays have been widely used in materials science. To date, they have become essential means of getting information about crystal structures and electronic and magnetic properties of materials. In the earlier studies, the structural, physical and chemical properties had been investigated mostly in pristine substance like the single crystals or the single phase compounds, whilst the recent applications of the synchrotron X-rays extend to practical materials which are generally polycrystalline and inhomogeneous. In addition, the *in situ* measurements are becoming more popular in order to get better understanding about what happens in materials during manufacturing processes or practical uses.

A study of permanent magnets using the synchrotron X-rays is such a recent subject since magnets are usually inhomogeneous with the microstructure. A Nd-Fe-B sintered magnet has been the strongest permanent magnet since its invention by Sagawa et al. in 1983 [1] and is widely used in many applications such as electric vehicles, wind power generators and voice coil motors, which are crucial for realizing a sustainable society. However, the coercivity mechanism in the Nd-Fe-B sintered magnets remains a debated issue in which the practical coercivity of approximately 1–2 T is rather moderate compared to the value expected from its magnetic anisotropy field of approximately 7.5 T. We have, therefore, carried out the synchrotron based characterizations for the analysis of structural and magnetic properties of the Nd-Fe-B sintered magnets by applying X-ray diffraction (XRD) and X-ray magnetic circular dichroism (XMCD) experiments, respectively. In this talk, I will present recent studies on structural and magnetic properties in high performance permanent magnets using the synchrotron X-rays at SPring-8. I will also illustrate the developments of measurement techniques which have were motivated by the necessity of the characterization of the permanent magnets.

Figure 1 shows the summary of the measurement techniques and their measured examples which have been obtained in studies of the Nd-Fe-B sintered magnets at SPring-8. In the experiment using soft XMCD, the fractured surface in Nd-Fe-B-Cu sintered magnet was investigated to evaluate the magnetic property of the grain boundary (GB) phases directly [2]. This work has clarified that the GB phase which is exposed in the fractured surface shows ferromagnetic at room temperature and have the lower Curie temperature than that of $Nd_2Fe_{14}B$ crystal by about 50 °C. Since this result was recorded using an unfocused soft X-ray beam with the irradiated area of about sub-mm² in the sample surface, the magnetic property were detected as the laterally averaged from a number of grains. In order to increase the spatial resolution in the soft XMCD measurement, we have developed a scanning soft XMCD microspectroscopy measurement technique with the apparatus equipped with an 8 T superconducting magnet at BL25SU of SPring-8 [3]. This observation technique using the focused soft X-ray beam with the beam size of about 100 nm makes us possible to visualize magnetic domains with the elemental distribution not only for the flat surface like the polished one but also for the irregular surface like the fractured one. The substantial difference in the magnetic domain reversal is observed for the polished and fracture surfaces [4]. The magnetic domain reversal behavior is also compared with the result of the FORK measurement, showing that the magnetic domain observation is valuable to give an interpretation of the FORK diagram [5]. Regarding the uses of the hard X-rays, we performed the scanning hard XMCD microspectroscopy experiment using the focused X-ray beam as small as 100 nm² at BL39XU of SPring-8 [6]. In the magnetic domain observation using the hard X-rays, the surface insensitive observation becomes possible though the deeper probing depth decrease the lateral spatial resolution. More recently, the observation technique for visualizing magnetic domains three dimensionally has been developed using the focused hard X-ray beam. This development directs the future uses of the magnetic domain observation techniques, where the soft and hard X-rays will probe the surface two dimensionally and the interior three dimensionally, respectively. In the structural analysis, the in situ XRD

measurement at elevated temperature and the Rietveld analysis have also been applied to studies of the Nd-Fe-B-Cu sintered magnet in order to evaluate the variation of the constituent phases during the annealing process. As the result of the Rietveld analysis, it is implied that dhcp Nd phase in the Nd-Fe-B-Cu sintered magnet contains a certain amount of oxygen and shows the phase transition to the fcc structure when the internal stress is removed [7]. Here, I would like to emphasize that the structure and/or magnetic property of crystalline phases in materials with the microstructure are possibly different from their pristine materials, meaning that the new functional material would be found even in materials which is practically used at present. The synchrotron X-ray measurement technique with the nano-scale resolution will possibly becomes a tool to discover a new material which will make an innovation.

Fig.1 Measured examples in synchrotron X-ray experiments and developed measurements techniques at SPring-8 for studies of permanent magnets.

Acknowledgements

The authors are grateful to Dr. Nishiuchi of Hitachi Metal Ltd. and H. Nakamura of Shin-Etsu Chemical Co., Ltd. for providing the Nd-Fe-B sintered magnet samples for the synchrotron experiments. Part of this work is supported by the Elements Strategy Initiative Center for Magnetic Materials under the outsourcing project of MEXT, and the Japan Science and Technology (JST) Agency, Collaborative Research Based on Industrial Demand (JPMJSK1617).

- [1] M. Sagawa, S. Fujimura, N. Togawa, H. Hashimoto, and Y. Matsuura, J. Appl. Phys. 55, 2083 (1984).
- [2] T. Nakamura, A. Yasui, Y. Kotani, T. Fukagawa, T. Nishiuchi, H. Iwai, T. Akiya, T. Ohkubo, Y. Gohda, K. Hono, and S. Hirosawa, Appl. Phys. Lett. 105, 202404 (2014).
- [3] Y. Kotani, Y. Senba, K. Toyoki, D. Billington, H. Okazaki, A. Yasui, W. Ueno, H. Ohashi, S. Hirosawa, Y. Shiratsuchi and T. Nakamura, J. Synchrotron Rad. 25, 1444 (2018).
- [4] D. Billington, K. Toyoki, H. Okazaki, Y. Kotani, T. Fukagawa, T. Nishiuchi, S. Hirosawa and T. Nakamura, Phys. Rev. Mater. 2, 104413 (2018).
- [5] K. Miyazawa, S. Okamoto, T. Yomogita, N. Kikuchi, O. Kitakami, K. Toyoki, D. Billington, Y. Kotani, T. Nakamura, T. Sasaki, T. Ohkubo and Kazuhiro Hono, Acta Materialia 162, 1-9 (2019).
- [6] M. Suzuki, A. Yasui, Y. Kotani, N. Tsuji, T. Nakamura and S. Hirosawa, Acta Materialia 106, 155-161 (2016).
- [7] N. Tsuji, H. Okazaki, W. Ueno, Y. Kotani, D. Billington, A. Yasui, S. Kawaguchi, K. Sugimoto, K. Toyoki, T. Fukagawa, T. Nishiuchi, Y. Gohda, S. Hirosawa, K. Hono and T. Nakamura, Acta Materialia 154, 25-32 (2018).

Effects of microstructure on magnetization reversal inside hot-deformed permanent magnet

H. Tsukahara¹, K. Iwano¹, C. Mitsumata², T. Ishikawa¹, K. Ono¹

¹High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan

²National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan

Introduction

For the development of high-performance permanent magnet, it is indispensable to know magnetization dynamics inside the permanent magnet. In demagnetization process, magnetization reversals are initialed and domain walls move across inside grains and grain boundaries. Magnetizations are interacted with each other through exchange and dipole fields, and these interactions play important roles in the domain wall displacement. However, the mechanism of magnetization process is not yet fully understood. In this study, we performed large-scale micromagnetic simulation using our simulation code [1] based on Landau–Lifshitz–Gilbert equation and analyzed simulation data to clarify magnetization reversal process inside the hot-deformed magnet.

Model and method

Figure 1(a) shows the simulation model of a nanocrystalline hot-deformed permanent magnet of size 1024 nm \times 1024 nm \times 512 nm. The simulation model consists of 3,391 tabular grains whose averaged diameter and thickness are 158.4 nm and 32 nm, respectively. Easy axes of the grains are randomly orientated from the z-direction, and the averaged tilt angle of the easy axis is 11.7°. The following Nd₂Fe₁₂B material parameters are assumed in our simulation: saturation magnetization 1281.2

emu/cm³, uniaxial constant 4.5×10^7 erg/cm³, exchange stiffness constant 12.5×10^{-7} emu/cm³, and Gilbert damping constant 1.0. We choose 12.5×10^{-9} emu/cm³ for inter-grain exchange interaction.

Results

Figure 1(b) shows a snap shot of magnetization reversal process inside the permanent magnet. The magnetization reversals are initiated in some regions where the dipole field of over 1.0T is applied. These dipole fields promote the magnetization reversal. After initiating the magnetization reversal, the domain walls move inside the grains and across the grain boundaries. The domain wall displacement creates pillar-shape magnetization reversal regions owing to the dipole field. The distribution of the dipole field has relationship with the microstructure of the permanent magnet. Figure 1(c) shows the magnetization reversal and the easy-axis orientations of the grain $(\Delta \theta)$ and contacted grain $(\Delta \theta_j^{\max})$. The magnetization is preferentially reversed inside the grains having large $\Delta \theta + \Delta \theta_j^{\max}$.

Acknowledgments

The authors would like to express their sincere thanks to the crew of the Center for Computational Materials Science of the Institute for Materials Research, Tohoku University.

H. Tsukahara, K. Iwano, C. Mitsumata, T. Ishikawa, K. Ono, Phys. Rev. Applied **11**, 014010 (2019).

Fig 1: (a) Simulation model of this study, (b) the snap shot of the magnetization reversal process, and (c) the relationship between magnetization reversal and the orientation of the easy-axis of grains.

Defect grain influence on the mechanism of coercivity and its angular dependence of exchange-coupled polycrystalline Nd-Fe-B magnet

J. Li¹, Xin Tang¹, H. Sepehri-Amin¹, T. Ohkubo¹, K. Hono¹

¹ Elements Strategy Initiative Center for Magnetic Materials, National Institute of Materials Science, Tsukuba 305-0047, Japan

The coercivity mechanism of Nd-Fe-B-based magnet has been in dispute since its discovery. Considering the existence of the defect regions such as the grain boundary (GB), where K_1 is locally damaged or grains are largely misaligned, the nucleation model suggests that the coercivity is determined by the formation of the reversed magnetic domain at these defect regions, whereas the pinning model suggests that domain wall (DW) pinning/depinning process is dominant for the coercivity. In recent years, the finite element micromagnetic simulation method has developed into a strong tool to study the coercivity of Nd-Fe-B magnet with complex microstructure. However, even for a simple case with uniform ferromagnetic GBs, the predicted coercivity by simulation can diverge largely from experimental results, ranging from 1 T to 3.2 T [1-3]. A systematic study is necessary to clarify the physics behind these simulation results.

In this work, we focus on the exchange-coupled Nd-Fe-B magnet, based on the simulations of a three-phase micromagnetic model including the polyhedron Nd-Fe-B grains, the continuous thin ferromagnetic GBs and a defect grain on the model surface (Fig.1 (a)). It is shown that, depending on the anisotropy degradation of the defect grain, K_1^{def}/K_1 , both pinning- and nucleation-controlled reversals can appear (Fig.1 (b)). The linear formula, $\mu_0 H_c = \alpha \mu_0 H_c - N_{\text{eff}} \mu_0 M_s$, is confirmed to be valid for both pinning- and nucleation-controlled coercivity but with different dominant factor of α . If nucleation starts at a defect grain, α is directly influenced by K_1^{def}/K_1 as indicated by the linear relationship between K_1^{def}/K_1 and coercivity, whereas for pinning-controlled reversal, α is hardly influenced by K_1^{def}/K_1 . The simulated angular dependence of coercivity shows strong dependence on the reversal mode (Fig.1 (c)). In a pinning-controlled reversal, the coercivity continuously increases with measurement angle θ , whereas in a nucleation-controlled reversal, the coercivity decreases at small θ but increases again at large θ .

To compare the simulation with experiment, 0.5%-Ga-doped sintered magnets with/without post-sintered annealing [4] are utilized to measure the angular dependence. Our simulation of pinning-controlled model agrees well with the as-sintered sample, indicating the pinning mechanism for the coercivity of this exchange-coupled magnet. In addition, the angular dependence of the post-annealed exchange-decoupled sample will be further discussed, in comparison with our simulation of magnet model with non-ferromagnetic GBs.

References

- 1) J. Fujisaki, et al., IEEE Trans. Magn. 50 (2014): 1-4.
- 2) M. Soderžnik, et al., Acta Mater. 135 (2017): 68-76.

3) J. Fischbacher, et al., Scripta Mater. 154 (2018): 253-258.

4) T.T. Sasaki, et al., Scripta Mater. 113 (2016) 218-221.

Fig.1 (a) The micromagnetic model of exchange-coupled Nd-Fe-B sintered magnet. (b) Simulated coercivity value as a function of K_1^{def}/K_1 . (c) Comparison between simulated and measured angular dependence of coercivity.

Demagnetizing field correction of rare earth permanent magnets using finite element method

J. Fujisaki¹, A. Furuya¹, H. Shitara¹, Y. Uehara², K. Kobayashi³, Y. Hayashi⁴, K. Ozaki⁵ ¹Fujitsu Ltd., Kawasaki, 211-8588, Japan ²Magnetic Device Laboratory Ltd., Kawasaki, 215-0011, Japan ³Shizuoka Institute of Science and Technology, Fukuroi, 437-8555, Japan ⁴ Toei Industry Co. Ltd., Machida, 194-0035, Japan ⁵National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, 463-8560, Japan

Among the problems with performance improvement of electric vehicles, recently the accurate measurement of magnetic curves of the rare earth permanent magnets such as Nd-Fe-B sintered magnets¹⁾ is attracting much attention. The problem is the difficulty of measurement of full loops of permanent magnets having high coercivity using closed magnetic circuit measurements, due to the magnetic saturation of pole piece in apparatus. It is possible to avoid such problem with measurements of open magnetic circuit, such as VSM, and employing the demagnetizing field correction method with single coefficient *N* of the sample (conventional method). Although the above correction method works well for most magnetic materials, there are some cases that the open magnetic circuit curves for Nd-Fe-B sintered magnets are not fully corrected by using conventional method. In order to overcome this problem, many researches on the accurate correction method are being performed². In this presentation, a new demagnetizing field correction method is proposed and some results are shown.

The detailed algorithm is as follows: First, the mesh model of the magnet and the measured open magnetic circuit hysteresis curve are prepared. Second, temporary closed magnetic circuit curve defined as the following equation is set at all meshes in the model,

 $M_{close}(H) = M_r^{open} \tanh\{A(H - H_c^{open})\} + B(H - H_c^{open})$ (1) where, M_r^{open} and H_c^{open} are the remanence and the coercivity of the measured open magnetic circuit curve. A and *B* are the parameters that are initially set to zero. Then, the distribution of the demagnetizing field and the magnetization of the mesh model are calculated by using finite element method for all steps of the applied magnetic field. Next, the averaged magnetization of the whole meshes is compared with that of the measured open magnetic circuit curve, and

The result for 4mm-cubed $Nd_2Fe_{14}B$ sintered magnet is shown in Fig. 1. The dotted curve is the measured closed magnetic circuit curve and the solid one is the calculated closed magnetic circuit curve. Moreover, the long dashed curve is measured by VSM with ceramic superconducting magnet and the dashed one is obtained by convectional

the difference between them is evaluated. Based on the difference, the parameters in Eq. (1) are modified. The

procedure explained above is repeated until the difference becomes smaller than the threshold.

method. From Fig. 1, it could be said that the new demagnetizing field correction method is able to reproduce the squareness of the measured closed magnetic circuit curve with higher accuracy than conventional method.

Acknowledgements

This research is supported by Technology Research Association of Magnetic Materials for High-Efficiency Motors (MagHEM), which is consigned by New Energy and Industrial Technology Development Organization (NEDO) of Ministry of Economy, Trade and Industry, Japan.

Reference

- 1) M. Sagawa, et al, J. Appl. Phys., 55, 2083 (1984)
- 2) H. Nishio, et al, IEEE Trans. Magn., Vol. 53, No. 4 (2017) measured curve

Fig. 1 Demagnetizing field corrected curves and the measured curve

Easy measurement of anisotropy constants for Nd-Fe-B sintered magnet

H. Nishio^{1, 2} and K. Machida¹

¹ Division of Applied Chemistry, Osaka University, Suita 565-0871, Japan ² Research Institute for Measurement of Magnetic Materials, Yokohama 240-0026, Japan

1. Introduction To reduce the irreversible demagnetization of Nd-Fe-B sintered magnets at elevated temperatures, it is necessary to significantly improve coercivity (H_{cl}) which is related to the quadratic (first, K_1) anisotropy constant. Recently easy measurements of anisotropy constants $[K_1$ and quartic (second, K_2) have received considerable interest in connection with related fields of applications. We have newly developed useful and simplified torque measurement that efficiently operates in high fields (H) using a superconducting magnet (SCM) in the temperature range of 298-473 K.¹⁾ 2. Experiment The composition of the sintered magnet used was Nd_{13.6}Fe_{bal}Co_{1.1}Al_{0.3}B_{5.7} with H_{cJ} of 0.99 MA/m and saturation magnetization (J_s) of 1.51 T at 298 K. The composition of the magnet with excellent orientation is considerably close to the Nd₂Fe₁₄B single crystal, so that it can be considered as K_1 value makes no great difference. To obtain anisotropy constants, we made use of a new torque magnetometer mounted strain gauges on a rigid pipe (made of Ti) to sense the force (F) in a highly uniform H (0.02%/10 mm cube).¹⁾ Sample is mounted on the free end of the rigid pipe in the center of SCM. It is only in the case of an ellipsoid that the demagnetizing field becomes uniform for a uniform distribution of magnetization. Thus we chose a sphere (diameter of 7.0 mm) for the shape of sample. To measure the K_1 and K_2 from the results of F obtained from the strain output (ε) using Wheatstone bridge circuit, we ensured angles of inclination (ϕ) of 45° and 20° to the perpendicular unidirectional *H*. The torque $L(\phi)$ obtained from *F* is equivalent to the values of magnetic torque $[L(\theta)]$ curve at θ of 45° and 20°, where θ is the angle between the easy axis and J_{s} . $L(\theta)$ exerted by the magnetic anisotropy energy of sample can be measured by the mechanical torque [L (= $F \times l_s$ acting on the rigid pipe, where l_s is the length of the rigid pipe. In highly uniform H, the force $(= M \times \partial H_z/\partial z)$ based on magnetic moment (M) does not act on the rigid pipe, because a gradient of $H(\partial H_z/\partial z)$ can be disregarded. Therefore, L acting on the rigid pipe is the only $L(\theta)$. $L(\theta)$ of a tetragonal symmetry is generally expressed: $L(\theta) = -(K_1 + \delta_1)$ $(+ K_2) \sin(2\theta) + (K_2/2) \sin(4\theta)$. F was loaded the outside of the SCM by the weight in free end of the rigid pipe mounted horizontally on a vice. The torque proofs were corrected using the product of mass of the weight (10-300 g) and l_s .

<u>3. Results and discussion</u> The large *L* was almost proportional to ε : $L = 3.839 \times \varepsilon - 0.003$. Fig. 1 shows the strain output for the magnet at φ of 45° and 20°, and the blank sample. The measured values of ε are necessary to make the correction using the values of the blank sample in these respective *H* (4.8, 5.6, 6.4, and 7.2 MA/m). Fig. 2 shows K_1 of the magnet, which was extrapolated to the infinite *H* at various temperatures. K_1 and K_2 of the magnet were 4.6 and 0.37 MJ/m³ at 298 K, respectively. K_1 was in substantially agreement with the published values for the Nd₂Fe₁₄B single crystal.²⁾ As the temperature rose to 473 K, these deteriorated remarkably to 1.0 and 0.23 MJ/m³, respectively. Both K_1 and K_2 decreased as the temperature increased. Anisotropy field of magnet at 298 K was 6.09 MA/m. A significantly higher *H* than H_A was necessary to obtain H_A for the Nd-Fe-B sintered magnet. Despite the very simple mechanism, this method can measure the large K_1 and K_2 of Nd–Fe–B sintered magnet at elevated temperatures in high *H*.

AcknowledgmentWe are grateful to Showa Measuring Instruments Co., Ltd., for helping to mount the strain gauge.References1) H. Nishio and K. Machida, IEEE Trans. Magn., 54 (2018) 6000904.2) D. Givord et al., Solid State Commun., 51 (1984) 857.

Fig. 1 Plots of strain output versus the reciprocal field at 298 K.

Fig. 2 Plots of the K₁ versus the reciprocal field at 298-473 K.

Potential of RFe_z (z = 9-12) alloys as permanent magnet materials

S. Sakurada

Corporate Research & Development Center, Research & Development Division, Toshiba Corporation

 RFe_z compounds (R = rare earth element, z = 9-12) crystalized in the ThMn₁₂ structure [1] or the TbCu₇ structure [2] have been investigated as promising candidates for next-generation high-performance permanent magnet materials because they can contain large amounts of iron. Some of these compounds are reported to exhibit intrinsic magnetic properties of exceeding that of Nd₂Fe₁₄B [3,4]. We have focused on the crystal phases appearing in such iron-rich R-Fe alloys, their phase stability, and the magnetic properties of these compounds for the last 30 years, and mainly obtained the following results and findings.

- (1) The atomic radius of the element occupying the rare-earth site is an important factor to stabilize the $ThMn_{12}$ structure in $RFe_{10}Si_2$ system. The $ThMn_{12}$ phase was found in the system in which the individual rare-earth atomic radius were smaller than those of neodymium in $RFe_{10}Si_2$. In the $(Nd,Zr)Fe_{10}Si_2$ system, zirconium occupies the neodymium site and facilitates the formation of the $ThMn_{12}$ phase owing to the decrease in the atomic radius of the neodymium site [5].
- (2) In $(Nd,Zr)Fe_{12-x}Si_x$, the ThMn₁₂ phase was not observed at $x \le 1$, and the Th₂Ni₁₇ phase or the Th₂Zn₁₇ phase were observed together with α -Fe. However, in $(R,Zr)(Fe,Co)_{10}$ rapidly quenched alloys $(R=Nd, Sm, V_s = 40m/s)$, almost a single phase with the TbCu₇ structure was obtained. The presence of zirconium makes it possible to realize a TbCu₇ structure with a high lattice constant ratio c/a of more than 0.87. In the structure, it is believed that a greater number of the dumbbell arrangements of iron atoms exist. $(Sm,Zr)(Fe,Co)_{10}N_x$ prepared by rapid quenching, annealing, and nitogenation exhibited a high saturation magnetization (μ_0M_s) of 1.70 T and an anisotropy field (μ_0H_a) of 7.7 T [4].
- (3) We have developed isotropic magnet powder with the composition of $(Sm,Zr)(Fe,Co)_zB_{0.1}N_x$ (z = 9-10). A small addition of boron is effective for forming the amorphous phase in the rapidly quenched alloys and for obtaining uniform and fine grains of the TbCu₇ phases after annealing. The magnetic properties of these powders are $B_r = 1.00-1.07$ T, $H_{cJ} = 640-880$ kA/m, $(BH)_{max} = 160-180$ kJ/m³. Isotropic bonded magnets fabricated using such powder show highest $(BH)_{max} = 123$ kJ/m³ [6] and are currently commercialized and used in various motors.
- (4) Compounds containing a greater number of the dumbbell arrangements of iron atoms such as RFe₁₂ having the ThMn₁₂ structure and RFe₉₋₁₂ having the TbCu₇ structure tend to be appeared in alloys having the smaller atomic radius of the rare-earth site. However, use of heavy-rare-earth lowers the saturation magnetization. Therefore, it is important to realize a situation similar to the heavy-rare-earth compounds by the substitution of Nd or Sm with the element having a smaller atomic radius such as Zr.

In this presentation, I also mention recent topics on the intrinsic magnetic properties of RFe₉₋₁₂ compounds and attempts to improve the coercivity, as well as some interesting issues that have not been solved for these compounds.

- 1) K. Ohashi et al., IEEE Trans. Magn. 23 (1987) 3101–3103.
- 2) M. Katter et al., J. Appl. Phys. 70 (1991) 3188-3196.
- 3) Y. Hirayama et al., Scr. Mater. 138 (2017) 62–65.
- 4) S. Sakurada et al., J. Appl. Phys. 79 (1996) 4611–4613.
- 5) S. Sakurada et al., J. Alloys Compd. 187 (1992) 67–71.
- 6) S. Sakurada et al., Proc. 16th Int. Workshop on RE Magnets and Their Applications (2000) 719-726.

Site preference of dopant elements in rare-earth permanent magnets

Munehisa Matsumoto, Takafumi Hawai, Kanta Ono

Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801

Rare-earth permanent magnets (REPM's) fabricated on the basis of Nd-Fe-B alloys have a problem in temperature resistance of magnetic properties due to the relatively low Curie temperature at 585K of the main-phase compound $Nd_2Fe_{14}B$ and sometimes need expensive elements like Dy in industrial applications for traction motors of electric vehicles to supplement the high-temperature performance. It is desirable to raise the Curie temperature, enhance the temperature resistance of magnetic properties, or/and avoid expensive elements in REPM. While prospective SmFe₁₂-based REPM could provide an ideal answer to all of the above wished requests, addition of extra elements seems to be unavoidable to ensure the structural stability of the particular 1:12 crystal structure, among which one of the most typical ones is Ti, yielding $RFe_{11}Ti$ compounds. Here the best compromise in the tradeoff between ferromagnetism and structure stability is pursued. In order to estimate the best possible magnetic performance in the operation temperature range of the REPM compounds, we inspect from first principles the intrinsic magnetic properties and energetics for the site preference of dopant elements in Nd₂Fe₁₄B [1] and in RFe₁₂ (R=Sm and Nd) partly aided by experimental data obtained by neutron scattering experiments. We put a focus on the effect of dopant elements on the exchange couplings between rare-earth and Fe-group elements which basically put the most stringent constraint on the utility of the main-phase ferromagnet [2]. Contrasting trends between Ti and Co in the preferred sites are elucidated referring to the magnetic exchange couplings between dopant and host atoms. Implications of those numerically and experimentally observed trends on the robustness of localized magnetic moments on Fe all through the sample fabrication processes are discussed. The best compromise with $Sm(Fe,Co)_{11}Ti$ and $Nd(Fe,Co)_{11}TiN_x$ is inspected.

References

1) MM, preprint [arXiv:1812.10945].

2) MM, H. Akai, Y. Harashima, S. Doi, and T. Miyake, J. Appl. Phys. 119, 213901 (2016).

Magnetic anisotropy constants and magnetic moments of Fe in Th Mn_{12} -type Sm $(Fe_{1-x}Co_x)_{12}$ compounds

D. Ogawa¹, T. Yoshioka², S. Li³, T. Ueno³, S. Sakai³, T. Mitsui³,

Y. K. Takahashi¹, H. Tsuchiura², S. Hirosawa¹ and K. Hono¹

1 Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials

Science, Tsukuba, 300-0047 Japan

2 Department of Applied Physics, Tohoku University, Sendai, 980-8579, Japan

3 National Institutes for Quantum and Radiological Science and Technology QST, Hyogo,

679-5148/Takasaki 370-1292, Japan

The ThMn₁₂-type the Sm(Fe_{1-x}Co_x)₁₂ ($0 \le x \le 0.2$) compound films exhibit intrinsic hard magnetic properties superior to those of Nd₂Fe₁₄B for $x=0.2^{1}$. Therefore, it is important to investigate the origin of intrinsic magnetic properties such as magnetic anisotropy and magnetization of the $Sm(Fe_{1-x}Co_x)_{12}$ compound and their temperature dependence. In this work, we evaluated the magnetic anisotropy constant of the $Sm(Fe_{1-x}Co_x)_{12}$ films by using the anomalous Hall effect (AHE) torque measurements. The results were compared with the ab-initio calculations of the crystal field parameters at the Sm site using a spin model of $Sm(Fe_{1-x}Co_x)_{12}$ compounds. We also evaluated the magnetic moment of each Fe site in $Sm(Fe_{1-x}Co_x)_{12}$ films and their temperature dependence using the total reflection synchrotron-radiation Mössbauer spectroscopy method.

Epitaxial $Sm(Fe_{1,x}Co_x)_{12}$ films were prepared by an ultra-high vacuum magnetron co-sputtering system with the stacking structure of MgO(001) substrate/V(001)(10nm)/Sm(Fe_{1-x}Co_x)₁₂(288-325nm)/V(2nm) (x=0, 0.07, 0.2). Anomalous Hall effect was measured by using a physical property magnetic system (PPMS) with a maximum magnetic field of 14T. ⁵⁷Fe Mössbauer spectra were measured at RT and 250°C on the beamline BL11XU at SPring-8.

Fig.1 shows the temperature dependence of K_1 and K_2 for the Sm(Fe_{1-x}Co_x)₁₂ films with various Co contents. While K_1 monotonically decreases with increasing temperature, K_2 changes its sign from negative to positive with increasing temperature. This behavior is consistent with the effective spin model approach²⁾ based on the ab-initio calculation. Fig.2 shows the internal magnetic field of each Fe site and their magnetic moment as a function of Co content at RT and 250°C from the analysis of Mössbauer data. The fitting was performed using three independent spectra for the 8i, 8j and 8f Fe-sites. The site dependence of internal magnetic fields follows the sequence 8i > 8j > 8f, which corresponds to the previous Mössbauer measurement in Th Mn_{12} structure³). When the moment of Sm is assumed to be zero, the estimated saturation magnetization value without Co (x=0) is about 1.65T at RT, which is in a good agreement with the previously reported value¹⁾. The enhancement of magnetic moments was observed at each Fe site as increasing the Co content, which could be the reason for the magnetization enhancement of $Sm(Fe_{1-x}Co_x)_{12}$ compound.

Fig.1 K_1 , K_2 for Sm(Fe_{1-x}Co_x)₁₂ films as a function of temperature

Fig.2 Internal magnetic field and magnetic moment at each Fe site for $Sm(Fe_{1-x}Co_x)_{12}$ films

- Y. Hirayama, Y.K. Takahashi, S. Hirosawa and K. Hono, Scr. Mater., 138, 62 (2017). 1)
- T. Yoshioka and H. Tsuchiura, Appl. Phys. Lett. 112, 162405 (2018) 2)
- M. Gjoka, V. Psycharis, E. Devlin, D. Niarchos, G. Hadjipanayis, J. Alloys Compd. 687, 240-245 (2016). 3)

Origin of the magnetisation enhancement by Zr addition in $(Sm_{1-x}Zr_x)(Fe_{0.8}Co_{0.2})_{12}$ studied using X-ray magnetic circular dichroism

A. Martin-Cid^{1,2}, S. Kobayashi^{1,2}, K. Toyoki^{1,2}, D. Ogawa², Y.K. Takahashi², S. Hirosawa², K. Hono², T. Nakamura^{1,2}

¹Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, 679-5198, Japan ²Elements Strategy Initiative Center for Magnetic Materials (ESICMM), National Institute for Materials Science, Tsukuba 305-0047, Japan

The scarcity of rare earth elements (RE) categorized as critical raw materials have stimulated the search for new rare earth-free/lean alloys alternatives for Nd-Fe-B based permanent magnets. Some of REFe₁₂ compounds with tetragonal ThMn₁₂ (1:12) structure show high magnetocrystalline anisotropy [2] and an inherent lean content of rare earths (7.7 at.%) compared with Nd₂Fe₁₄B (11.8 at.%) can induce high magnetisation. However, binary REFe₁₂ is not thermodynamically stable and a ternary element in substitution of Fe is needed to obtain the 1:12 structure in bulk, which reduces the saturation magnetisation of the compound [3]. Recently, it has been reported that substitution of Sm with Zr stabilises the 1:12 structure without decreasing magnetisation in the certain range of Zr concentration [4,5].

In this work, we have measured XMCD spectra at the Fe and Co L_{2,3}-edges and the Sm M_{4,5}-edges in (001) oriented epitaxial $(Sm_{1-x}Zr_x)(Fe_{0.8}Co_{0.2})_{12}$ (x = 0, 0.14 and 0.26) films grown on a (001)-oriented V underlayer deposited on a MgO(001) single crystalline substrate, as reported by Hirayama et al. [6]. The magnetisations of these films at room temperature (RT) are summarized in Table 1. The XMCD experiment was performed at BL25SU of SPring-8. The element specific magnetisation was calculated by the sum rule analysis for the XMCD spectra recorded at RT and 20 K, which showed an increase of the magnetisation for the sample with x = 0.14. The present results show that the small addition of Zr of 0.14 enhances the magnetic moment of Fe atoms by a 6% while a large change of a 23% of the magnetic moment of Sm is found. The relatively low concentration of Sm in the 1:12 structure compared with Fe makes that the total magnetisation of the alloy is driven mainly by the enhancement of the magnetic moments of Fe, with a total increase of a 6.3%. Since the intensity of the resonant absorption (not shown here), which is proportional to the number of the 3*d* electron, doesn't change significantly, the charge transfer between Fe and Zr can be discarded as a dominant factor for this enhancement. This observation likely suggests that Zr substitution mainly affects the crystal structure such as the increase of local Fe-Fe distances or the weakening of Fe 3*d* – Sm 5*d* hybridisation, which leads to the enhancement of the ferromagnetic coupling.

Zr content	Magnetisation (T) SQUID	Magnetisation (T) XMCD	Ma	agnetic moment m (μ _B)	Δm (%)
	1.78	1.75	Fe	2.32	-
$\mathbf{x} = 0$			Co	1.53	-
			Sm	-0.42	-
	1.87	1.86	Fe	2.46	6.0
x = 0.14			Co	1.55	1.3
			Sm	-0.32	23.8

Table 1 Summary of the magnetisation	measured at RT by SQUID	and the magnetisation and	d magnetic moments of
each element calculated by XMCD which	was recorded at RT.		

- 1) A.M. Gabay, et al., Scr. Mater. 154 (2018) 284-288.
- 2) R. Verhoef, et al., J. Magn. Magn. Mater. 75 (1988) 319–322.
- 3) S. Suzuki, et al., J. Magn. Magn. Mater. 401 (2016) 259–268.
- 4) T. Kuno, et al., AIP Adv. 6 (2016), 025221.
- 5) Y. Hirayama, et al., Scripta Materialia **138** (2017) 62–65.

Grain size reduction of SmFe₁₂-based powders; toward development of bulk high-performance permanent magnet

H. Sepehri-Amin, I. Dirba, T. Ohkubo, and K. Hono

Elements Strategy Initiative Center for Magnetic Materials, NIMS, Tsukuba 305-0047, Japan

Recent investigations on intrinsic magnetic properties of $SmFe_{12}$ -based compounds with the $ThMn_{12}$ structure have shown that $Sm(Fe_{0.8}Co_{0.2})_{11}Ti$ and $Sm_{0.8}Zr_{0.2}(Fe_{0.8}Co_{0.2})_{11.5}Ti_{0.5}$ alloy compounds have comparable intrinsic hard magnetic properties and better temperature dependence with those of $Nd_2Fe_{14}B$ [1]. The remaining challenge is to further develop those intrinsic properties into practically useful extrinsic ones, particularly coercivity. In this work, we focused on reduction of the grain size of $SmFe_{12}$ -based compounds by jet-milling and investigated the phase stability of the powders with different particle size [2,3]. We also introduce a few grain boundary phases that can exchange decouple $SmFe_{12}$ -based grains in order to obtain high coercivity.

Starting alloys with compositions of $Sm(Fe_{0.8}Co_{0.2})_{11}Ti$, $Sm(Fe_{0.8}Co_{0.2})_{10.5}Ga_{0.5}Ti$, and $Sm(Fe_{0.8}Co_{0.2})_{10.5}Cu_{0.5}Ti$ were prepared by induction melting. The ingots were crushed into coarse powders and hydrogen decrepitated to reduce the particle size below 100 μ m. The powders were jet-milled for the particle refinement study. The magnetic properties were measured using a SQUID-VSM. Microstructure of the samples were analyzed using SEM/FIB (Carl Zeiss 1540EsB) and TEM (Titan G2 80-200).

We used three different compositions of $SmFe_{12}$ -based alloys and demonstrated fine, anisotropic, singlecrystalline $SmFe_{11}Ti$ -based micro-particles with high roundness by jet-milling using N₂ gas. The smallest particle size of $2.7\pm0.6 \ \mu\text{m}$ and roundness of 0.73 ± 0.13 was achieved in the case of $Sm(Fe_{0.8}Co_{0.2})_{10.5}Cu_{0.5}Ti$, as shown in Fig. 1 (a). Although the ThMn₁₂-type structure is preserved even at high milling gas pressures, the coercivity of the powders remained below 0.2 T. The intergranular phase that originally exist in the as-cast alloy is removed or changed to an amorphous surface phase as shown in Fig. 1 (b). Detailed characterization of jet-milled powders using BF and HAADF-STEM showed that the $SmFe_{12}$ -based jet-milled powders experience plastic deformation through crystallographic slip and the formation of slip bands during jet-milling process (Fig. 1(c)). Observed projection of the atoms in HAADF-STEM image (Fig. 1(c)) show that Sm atoms are missing in the slip bands

are missing in the slip bands indicating the crystal structure is damaged at the slip bands. These defects decrease local magnetocrystalline

anisotropy compared to the matrix region that can be nucleation centers for the formation of reverse magnetic domains and thus limiting the coercivity. We will show that possible solutions for minimizing defect formation are, using lower milling gas pressure, performing a postannealing step or using Ga doped alloy. starting

Sm(Fe_{0.8}Co_{0.2})_{10.5}Cu_{0.5}Ti Jet-milled powders

Figure 1: (a) Secondary electron (SE) SEM image showing morphology of jetmilled powders, (b) STEM-EDS maps and micro-diffraction pattern showing amorphous Sm-Cu rich phase at the surface of jet-milled powders, and (c) bright field (BF)-STEM and high resolution HAADF-STEM image (inset) obtained from inside of the jet-milled powders with composition of $Sm(Fe_{0.8}Co_{0.2})_{10.5}Cu_{0.5}Ti$.

Temperature-dependent XRD results showed that unlike large sized powders (>100 μ m), jet-milled powders with a size of smaller than 5 μ m decompose from the surface at temperatures above 600°C resulting in formation of α -Fe. We will also show low-melting alloys with good wettability with SmFe₁₂-powders that can be used for metal bonded magnets.

<u>Reference</u>

[1] P. Tozman, H. Sepehri-Amin et al. Acta Mater. 153 (2018) 534.

[2] I. Dirba, H. Sepehri-Amin et al. Acta Mater. 165 (2019) 9. [3] I. Dirba, H. Sepehri-Amin et al. Submitted.

Development of Sm-Fe-N bulk magnets showing high maximum energy products

Ryo Matsunami, Masashi Matsuura, Nobuki Tezuka, Satoshi Sugimoto (Tohoku University)

Introduction

Sm₂Fe₁₇N₃ compound shows high J_s , high H_A and high T_C , therefore the Sm₂Fe₁₇N₃ based bulk magnet is expected to show high thermal stability with high $(BH)_{max}$. However, it is well known that preparation of bulk Sm₂Fe₁₇N₃ based magnets cannot be obtained by conventional sintering process because of decomposition of this compound above around 600 °C. For obtaining bulk Sm-Fe-N magnets, applying metal binder having low melting temperature and/or applying Spark-Plasma-Sintering (SPS) have been reported by many researchers. Recently, our group and AIST group have reported that decreasing oxygen content in Sm₂Fe₁₇N_x based magnets is effective for suppressing deterioration of coercivity after heat treatment ¹⁻⁴. In our previous study, we applied Arc plasma deposition (APD) and SPS for preparing Zn-bonded Sm-Fe-N bulk magnets, and we reported $(BH)_{max}$ of 153 kJm⁻³ with H_{cJ} of 1.1 MAm⁻¹ for Zn-bonded Sm-Fe-N magnet and $(BH)_{max}$ of 179 kJm⁻³ with H_{cJ} of 0.8 MAm⁻¹ for binder-less Sm-Fe-N magnet ⁴). We also reported that the Hydrogen-Plasma-Metal-Reaction (HPMR) method is useful for preparation of fine Zn particles with low oxygen content ²). Thus, in this study, we applied HPMR method and SPS process for preparing Zn-bonded Sm-Fe-N magnets, and we obtained high $(BH)_{max}$ Sm-Fe-N bulk magnets.

Experimental Procedure

 Sm_2Fe_{17} coarse powder was pulverized by ball milling. The fine Sm-Fe powder was nitrided under N₂ gas at 450 °C. Zn fine powder was prepared by the HPMR method. After mixing Sm-Fe-N and Zn powder, the Sm-Fe-N/Zn mixed powder was pressed under magnetic field, and it was sintered by SPS with conditions of 750 MPa at 380-440 °C.

Results and Discussion

Oxygen content of the Sm-Fe-N powder was 0.22 wt%, and remanence and coercivity of the powder was 151 $\text{Am}^2\text{kg}^{-1}$ and 0.72 MAm⁻¹, respectively. Magnetic properties of the Zn-free Sm-Fe-N magnet were H_{cJ} of 0.86 MAm⁻¹ and $(BH)_{max}$ of 188 kJm⁻³, respectively. It is shown that coercivity of the magnet did not decrease after sintering because of low oxygen content. The 10 wt%-Zn Sm-Fe-N/Zn bonded magnets showed excellent magnetic properties of $(BH)_{max} =$ 200 kJm⁻³ with $H_{cJ} =$ 1.28 MAm⁻¹. Compared with previous studies, this $(BH)_{max}$ is highest level of Sm-Fe-N bulk magnets showing high H_{cJ} , simultaneously. The $(BH)_{max}$ of the Zn-bonded magnet was higher than that of Zn-free magnet in this study because of higher relative density. Therefore, Zn binder is effective for not only increasing coercivity but also increasing density of the magnets. Temperature coefficient of coercivity of the magnets were evaluated, and -0.38 %/K and -0.35 %/K for Zn-free and Zn-bonded magnets were obtained, respectively. Consequently, it is successfully obtained high performance Sm-Fe-N bulk magnets.

Acknowledgement

This study was partially supported by the Future Pioneering Program "Development of magnetic material technology for high-efficiency motors" (MagHEM) commissioned by the NEDO, and the Elements Strategy Initiative Center for Magnetic Materials (ESICMM) under the outsourcing project of MEXT.

- 1) R. Soda *et al.*, *AIP Adv.*, **6** (2016) 115108.
- 2) M. Matsuura, et al., J. Magn. Magn. Mater, 452 (2018) 243.
- 3) Y. Nishijima et al., Collected abstract of the 40th Annual Conference on Magnetics in Japan, 2016, p.254.
- 4) M. Matsuura, et al., J. Magn Mang. Mater, 467 (2018) 64.

Co₂FeSi/BaTiO₃界面マルチフェロイクヘテロ構造の磁気特性

<u>寺本侑樹</u>¹,山田晋也^{2,1},村田太一¹,松實大志¹,工藤康平¹,谷山智康³,浜屋宏平^{2,1} (¹阪大基礎工,²阪大基礎工 CSRN,³名大理)

Magnetic properties of a Co₂FeSi/BaTiO₃ interfacial multiferroic heterostructure

Yuki Teramoto¹, Shinya Yamada^{2,1}, Taichi Murata¹, Daishi Matsumi¹, Kohei Kudo¹,

Tomoyasu Taniyama³, Kohei Hamaya^{2,1}

(¹Grad. Sch. Eng. Sci., Osaka Univ., ²CSRN, Grad. Sch. Eng. Sci., Osaka Univ., ³Dep. Phys., Nagoya Univ.)

強磁性体と強誘電体の界面に形成されるマルチフェロイク状態を利用することで,強磁性体の磁化を電 界で制御することができる[1].これまで,ハーフメタルホイスラー合金/BaTiO₃へテロ構造において大きな電 気磁気結合の発現が理論的に予測されているが[2],実験的な報告例はない.本講演では,分子線エピタキシ ー(MBE)法を用いて作製した Co₂FeSi/BaTiO₃界面マルチフェロイク構造の磁気特性について述べる.

MBE 法[3]を用いて, Co₂FeSi 薄膜(膜厚: ~30 nm)を BaTiO₃(001)基板上に基板温度 200℃ で成長したところ, RHEED 像(Fig. 1 挿入図)はストリークパターンを示したため,二次元エピタキシャル成長に成功したと 判断した. XRD の面内 φ スキャン測定結果(Fig. 1)から, 4 回対称の(111)ピークが観測され, Co₂FeSi 薄膜中 に *L*2₁規則構造が形成されていることが判った. 300 K で測定

した磁化曲線より、この試料の飽和磁化は約 5 μ_B/f.u.となり、 これまで我々が報告してきた高スピン偏極率 Co₂FeSi 薄膜 [3,4]と同等の値を示した.また、膜面内に強い一軸磁気異方 性が確認された(Fig. 2 挿入図).これは、正方晶相の BaTiO₃に おける長方形格子面(a ドメイン)に Co₂FeSi 薄膜が成長したこ とを示唆している.

Fig. 2 には Co₂FeSi/BaTiO₃ ヘテロ構造の磁化容易軸 (BaTiO₃[010])および磁化困難軸(BaTiO₃[100])方向の残留磁化 の温度依存性を示す.Fe/BaTiO₃ ヘテロ構造[5]と同様に, BaTiO₃の構造相転移点(図中矢印)で残留磁化の変化が観測さ れ,特に斜方晶相から菱面体晶相への相転移点(~183K)におい ては大きな変化が観測された.これは,Co₂FeSi 薄膜の磁化容 易 軸 方 向 が 変 化 し て い る こ と を 意 味 し て お り , Co₂FeSi/BaTiO₃ 界面のスピン軌道相互作用の変化を介した磁 気弾性結合を捉えていると考えられる.

本研究の一部は,JST-CREST(JPMJCR18J1)とJSPS 科研費 (No. 16H02333,18KK0111)の支援を受けた.

- [1] T. Taniyama, J. Phys.: Condens. Matter. 27, 504001 (2015).
- [2] K. Yamauchi et al., Appl. Phys. Lett. 91, 062506 (2007).
- [3] S. Yamada et al., Appl. Phys. Lett. 96, 082511 (2010).
- [4] K. Hamaya et al., Phys. Rev. B 85, 100404(R) (2012).
- [5] T. Taniyama et al., J. Appl. Phys. 105, 07D901 (2009).

Fig. 1: ϕ -scan measurements of (111) plane for a Co₂FeSi film. The inset shows RHEED pattern after the growth of the Co₂FeSi film.

Fig. 2: Temperature dependence of remanent magnetization of the Co₂FeSi/BaTiO₃ heterostructure. The inset shows polar plots of the normalized remanent magnetization ($M_{\rm r}/M_{\rm s}$) at 300 K.

強誘電体上に創製した人工強磁性体中の磁気状態に関する電流応答

赤松直哉^{1,2}, 中村遼^{1,2}, 三枝峻也^{1,2}, 中尾愛子¹, 内海裕一¹, 山田啓介³, 大浦正樹²,

大河内拓雄^{4,2}, Taekhyeon Lee⁵, Kab-Jin Kim⁵, 小笠原剛⁶, 山口明啓^{1,2}

(1 兵庫県立大学,2 理化学研究所,3 岐阜大学,4 高輝度光科学研究センター,

5 韓国 KAIST, 6 産業技術総合研究所)

Electric current response of magnetic characteristics induced in artificial ferromagnets fabricated on a ferroelectric substrate

Naoya Akamatsu^{1,2}, Ryo Nakamura^{1, 2}, Shunya Saegusa^{1, 2}, Aiko Nakao¹, Yuichi Utsumi¹, Keisuke Yamada³, Masaki Oura², Takuo Ohkochi^{4, 2}, Taekhyeon Lee⁵, Kab-Jin Kim⁵, Takeshi Ogasawara⁶,

Akinobu Yamaguchi^{1,2}

(1 University of Hyogo, 2 RIKEN, 3 Gifu University, 4 JASRI, 5 KAIST, 6 AIST)

はじめに

ナノ・マイクロシステムは、ナノ・マイクロスケールでの機械工学と電気工学の融合分野である MEMS(Mechanical Electric Machine System)や流路デバイスの組み合わせで化学実験系をチップ上に創製する Lab-on-a-chip に代表されるシステムである。このシステムは、デバイス応用だけではなく、基礎研究を進め る上でも非常に重要な理想的な実験系を提供する[1]。本研究では、ナノ・マイクロシステムを用いて、物性 研究に展開し、強磁性体/強誘電体へテロ界面を介して誘発する強磁性体中の磁気状態に関する基礎的な物 性研究を進めた結果について報告を行う。

実験方法

電子線リソグラフィーとマグネトロンスパッタを用い たリフトオフ法により、強誘電体単結晶ニオブ酸リチウ ム基板上に厚さ 30 nm の Ni 細線を作製した。Ni 細線 は、ニオブ酸リチウム基板の結晶方位 X 軸方向 (Orientation Flat: OF)に対して、平行および垂直で配 置した。これまでの研究[2]において、SPring-8 BL25SU ならびに BL17SU の X 線磁気円 2 色性光電子顕微鏡 (X-ray Magnetic Circular Dichroism Photoemission electron Microscopy: XMCD-PEEM)を用いて、無磁場 下でのそれぞれの磁区構造が単磁区構造および縞状磁

Fig.1 サンプルおよび測定系の模式図.

区構造になることを報告した[2]。 今回は、これらの磁区構造の強磁性共鳴ならびに磁気抵抗効果及び直流 電流応答特性を測定した。Ni 細線に Ground-Signal-Ground(GSG)型のコプレーナーウェブガイド構造の電 極を Fig. 1 のように形成し、その電気応答特性を測定した。ここで、外部磁場は、Ni 細線に対して面内で角 度の方向に印加した。

結果と考察

強磁性共鳴周波数の外部磁場依存性を調べると、基本的にはマクロスピンモデルによる強磁性共鳴分散関係 が成立していることが分かった。ただし、縞状磁区構造が形成されている場合には、大きな応答特性が得ら れることが分かった。これは縞状磁区構造による大きな磁気抵抗が発現しているためと考えられる。また、 電流応答特性についても興味深い変化が発現することが分かった。ナノ・マイクロシステムを基盤技術とし て導入することで、ヘテロ構造導入による人工マルチフェロイック材料の創製および物性研究を行うことが でき、定量的かつ系統的な測定することが可能であることを示した。

参考文献

- 1) A. Yamaguchi, R. Takahashi, T. Fukuoka, R. Hara, Y. Utsumi, Sensors & Actuators B: Chemical 230 (2016) 94.
- 2) A. Yamaguchi, T. Ohkochi, A. Yasui, T. Kinoshita, K. Yamada, J. Magn. Magn. Mater. 453 (2018) 107.

強磁性・強誘電/強磁性金属積層膜への電界印加 による強磁性金属薄膜の磁化反転

吉村 哲,大下 直哉, M. Kuppan

(秋田大)

Magnetization reversal of metallic magnetic film fabricated onto (Bi,La)(Fe,Co)O₃ multiferroic film by applying electric field to multiferroic / metallic magnetic multilayers

S. Yoshimura, N. Oshita, M. Kuppan

(Akita Univ.)

はじめに 強磁性・強誘電材料は、電場(E)もしくは磁場(H)による磁化(M)および電気分極(P)の方向制御が 可能とされていることから、革新的な次世代電子デバイス用材料として研究が活発化してきている.電圧駆 動型の磁気記録デバイスに本材料を使用する場合、磁気特性において、高信号出力化などの観点から高い飽 和磁化(M_s),記録情報保持の観点から高い保磁力(H_c),高集積化などの観点から垂直磁気異方性,などの 磁気特性が求められる.著者らは、昨年、酸化物や窒化物の薄膜の、高速成膜・高電圧成膜・アーク放電の 抑制, に効果的な反応性パルス DC スパッタリング法を用い, (Bi1-xLax)(Fe0.75Co0.25)O3 薄膜を作製した結果, La 置換量が 60 %程度において, 70 emu/cm³を超える M_s, 4 kOe を超える H_e, 明瞭な垂直磁気異方性, 明瞭 な強誘電特性,など,BiFeO3系薄膜としてはこれまで報告されたことがない良好な磁気特性が得られたこと を報告した¹⁾.また、本薄膜において、走査型プローブ顕微鏡を用いたミクロンスケールでの電界印加磁化 反転にも成功した.しかしながら、本材料において磁気デバイス応用に有用な高い M。やスピン分極率が得ら れている訳ではなく,磁気 Kerr 効果においても大きなレーザ波長依存性がある²⁾ ことから,本材料単体でデ バイス化することは容易でなない.ここで、機能性の高い金属強磁性薄膜を本薄膜に積層し、積層膜への電 界印加により反転した強磁性・強誘電薄膜の磁化方向を金属強磁性薄膜に磁気転写することでその磁化方向 も反転させることができれば、本材料のデバイス応用の可能性が大いに広がる.本研究では、そのデモンス トレーションとして, 強磁性・強誘電(Bi1-xLax)(Fe0.75Co0.25)O3 薄膜に金属強磁性[Co/Pd]n多層膜を積層した系に おいて, 積層膜に電界印加を施すことで, (Bi1-xLax)(Fe0.75C00.25)O3 薄膜の磁化方向を変化させ, 磁気転写を介 して、[Co/Pd]n多層膜の磁化方向も反転させることを試みた.

方法 (Bi_{0.4}La_{0.6})(Fe_{0.75}Co_{0.25})O₃(BLFCO)薄膜(膜厚 200 nm)を,反応性パルス DC スパッタリング法を用いて, 熱酸化膜付き Si 基板/Ta(5 nm)/Pt(100 nm)下地層上に成膜した.積層膜は,Ta を室温,Pt を 300℃,BLFCO を 695℃,の基板温度で成膜した.スパッタリングターゲットには,La-Fe-O 粉末,Fe 粉末,Co 粉末を焼結さ せて作製した導電性ターゲットにBi シートを配置したものを用いた.反応性パルス DC スパッタリング法に おけるパルス条件として,周波数を100 kHz,電力を150 W,デューティー(ON:OFF)比を2:1とした.BLFCO 薄膜成膜後,リフトオフ法を用いたリソグラフィープロセスにより,完全な垂直磁気異方性を有する [Co(0.7nm)/Pd(2.0nm)]₄多層膜の3µm径のドットを積層および形成した.積層膜への局所電界印加および電界 印加前後の磁区および分域構造評価には,走査型プローブ顕微鏡を用いた.

結果 Fig.1 に,作製した積層膜およびそれに電界印加を施した場所に関する模式図,そして,電界印加前の MFM 像,電界印加後の MFM 像,をそれずれ示す.電界印加前の[Co/Pd]4多層膜ドット(左右いずれも)の MFM 像では,黒と白のコントラストがランダムにみられることから,消磁状態であることが判る.電界印加 後の MFM 像では,電界印加されていない方(右)のドットのコントラストは変化がない一方,電界印加さ れた方のドット(左)についてはコントラスト(黒い部分)がほとんどなくなり,消磁状態から磁化状態に

変化した(磁化が上に向いた)と言える. ラインプロファイルの詳細な解析から, 下向きに磁化していた部分の 75 %程度 が上向きに反転したことが判った.この 結果より,(Bi,La)(Fe,Co)O₃ / [Co/Pd]4 積層 膜において,電界印加磁化反転(磁気転 写)が観測されたと言える.

参考文献 1) 吉村 第 42 回日本磁気学会 学術講演概要集, 13aA-5., 2) 吉村 第 42 回日本磁気学会学術講演概要集, 13aA-10.

BiFeO₃/Co_{1-x}Cu_xFe₂O₄積層薄膜の磁気-電気効果

土田 将太、神島 謙二、柿崎 浩一 (埼玉大学 大学院 理工学研究科) Magnetoelectric effect of BiFeO₃/Co_{1-x}Cu_xFe₂O₄ multilayer thin films S. Tsuchida, K. Kamishima, and K. Kakizaki

(Graduate School of Science and Engineering, Saitama University)

<u>はじめに</u>

強磁性と強誘電性を併せ持つマルチフェロイック材料は、磁気歪みと圧電効果を介して、磁場が電気分極 を、電場が磁気分極を発現させる磁気-電気(ME)効果を示し、多値メモリーや磁気センサーなどへの応用が 期待されている¹⁾。本研究では強磁性体として CoFe₂O₄(CFO)を、強誘電体には BiFeO₃(BFO)を採用した。MOD 法で FTO 電極上に BFO/CFO/BFO 積層薄膜を成膜した。その際 CFO の Co²⁺を Cu²⁺で置換することで結晶化 温度の低減を図り、CFO 層の結晶性を改善することにより、大きな ME 効果を発現させることを目的とした。

<u>実験方法</u>

試料は MOD 法により作製した。出発溶液には Bi、Co、Fe および Cu の有機金属塗布材料(SYMETRIX)を用い、BiFeO₃お よび Co_{1-x}Cu_xFe₂O₄(CCFO)の組成となるように調製した。これ を室温で 24 時間撹拌した後、スピンコート法で FTO 電極付き ガラス基板上に塗布した。これを大気中 350℃で 30 分間乾燥 さた後、大気中 640℃で1時間熱処理を行った。この工程を繰 り返すことで BFO/ CCFO/ BFO 積層薄膜を作製した。作製し た試料の結晶構造は X 線回折法(XRD)により解析した。ME 効 果は分極処理した試料を用い、直流磁場および交流磁場を平 行に印加し、誘起される電圧をロックインアンプにより測定 した。

結果および検討

Fig. 1 は BFO/CCFO/BFO 積層薄膜(x=0~0.39)の X 線回折図 を示す。全ての試料で目的とする BFO および CFO 相が生成す るが、Cu 置換量の増加に伴い BFO 相の結晶性が低下する傾向 にある。これは、CFO 相の結晶化温度が低下したことで、各層 の界面で相互拡散が生じやすくなり BFO 中の Bi が CFO 層側 へ拡散したことが原因と考えられる。

Fig. 2 は BFO/CCFO/BFO 積層薄膜に直流磁場として H_{dc} =3.85 kOe を印加したときの ME 係数の Cu 置換量依存性を示す。Cu 置換量が x=0.07 の試料において ME 係数は 104.9 mV/cm・Oe と最も大きな値となる。これは Cu 置換により CFO 相の結晶 性が向上し、より大きな磁気歪みが発現したためと考えられ る。しかし、Cu 置換量がさらに増加すると ME 係数は減少す る。これは、各層の界面における相互拡散により BFO 相の結 晶性が低下したことが原因であると考えられる。

<u>参考文献</u>

1) N. A. Spaldin, M. Fiebig : Science, 309 (2005) 391.

Fig. 1 XRD patterns of BFO/CCFO/BFO multilayered thin films with various Cu contents.

Fig. 2 ME voltage coefficient of BFO/ CCFO/BFO multilayer thin films at the maximum magnetic field of 3.85 kOe as a function of Cu content, x.

Fe-Ga 合金単結晶の振動発電デバイスに搭載した状態での磁区構造

藤枝 俊*、髙橋 巧**、志村玲子**、川又 透***、福田承生****、鈴木 茂** (*阪大 工学研究科、**東北大 多元研、***東北大 金研、****福田結晶研) Magnetic domain structure of Fe-Ga alloy single crystal on vibration power generator S. Fujieda*, T. Takahashi**, R. Simura**, T. Kawamata***, T. Fukuda****, and S. Suzuki** (*Graduate School of Engineering Osaka University, **IMRAM Tohoku University, ***IMR Tohoku University, ****Fukuda Crystal Laboratory)

背景

Fe-Ga 合金の逆磁歪効果を利用した振動発電は、身の回りの振動から数ミリワットの電力を高効率に発 電できるため、IoT (Internet of Things) デバイスを駆動させるためのメンテナンスフリー小型電源としての活 用が期待されている^{1,2)}。このデバイスでは、U字型フレームに Fe-Ga 合金を貼り付けた状態でコイルを巻き 付け、永久磁石でバイアス磁場を印加する。固定端に振動を加えると、U 字部が支点となり、もう一方の自 由端が強く振動する。振動により Fe-Ga 合金に引張りおよび圧縮応力が加わると逆磁歪効果によりコイルを 貫く磁束が変化するため電磁誘導により誘導起電力が生じる。本研究では、振動発電機構の解明に向けて、 U字型デバイスに搭載した状態で Fe-Ga 合金単結晶の磁区観察を行った。

実験方法

Czochralski 法により作製した大型 Fe-Ga 合金単結晶インゴットから、板面が(001)面および長手方向が [010]方向の板状試料を切り出した後、機械研磨および電解研磨を施した。振動による応力が[010]方向と平行 に加わるように板状試料を U 字型フレームに貼り付けた。磁区観察には Faraday 効果を利用した磁気フィー ルド可視化システムを用いた。

実験結果

U字型振動発電デバイスへの(a)搭載前および(b)搭載後における Fe-Ga 合金単結晶の磁区観察結果を図1 に示す。デバイス搭載前において、Fe-Ga 合金単結晶は試料全面において微細で複雑な磁区構造を示す。デ バイス搭載後においても、Fe-Ga 合金単結晶は自由端側では微細で複雑な磁区構造を示す。一方、支点側で は[010]方向に平行な縞状構造を示す。Kerr 効果顕微鏡を用いた Fe-Ga 合金単結晶の磁区観察により、<100> 方向と平行に引張り応力を印加すると、印可応力を緩和するように磁区構造は変化して、引張り方向に平行 な磁化方向の磁区および直線的な 180°磁壁で構成された類似の縞状構造が形成することが報告されている ³⁾。つまり、デバイス搭載後の支点側での縞状磁区の形成は引張りの残留応力の発生を意味する。Fe-Ga 合金 単結晶をデバイスに搭載するために U 字型フレームに貼り付けると残留応力が生じて、磁区構造は不均一な 状態となることが明らかになった。

Fig.1 U字型振動発電デバイスへの(a)搭載前および(b)搭載後の Fe-Ga 合金単 結晶の(001)面の磁区構造。

参考文献

- 1) T. Ueno and S. Yamada, IEEE Trans. Magn., **47** (2011) 2407.
- 2) 上野敏幸, 日本 AEM 学会誌, 26 (2018) 185.
- 3) S. Fujieda, S. Asano, S. Hashi, K. Ishiyama, T. Fukuda and S. Suzuki, J. Appl. Phys., 124 (2018) 233901.

軟X線MCD顕微分光による熱間加工磁石の磁化過程評価

竹内誠¹,蓬田貴裕¹,菊池伸明¹,岡本聡^{1,2},北上修¹,

豊木研太郎 2.3,*,小林慎太郎 2.3,小谷佳範 3,中村哲也 2.3,服部篤 4,日置敬子 5

(¹ 東北大, ²ESICMM, NIMS, ³JASRI, ⁴(株)ダイドー電子, ⁵大同特殊鋼(株)), ^{*}(現)大阪大

Magnetization reversal process of hot-deformed Nd-Fe-B magnets

using soft X-ray magnetic circular dichroism microscopy

M. Takeuchi¹, T. Yomogita¹, N. Kikuchi¹, S. Okamoto^{1,2}, O. Kitakami¹,

K. Toyoki^{2,3*}, S. Kobayashi^{2,3}, Y. Kotani³, T. Nakamura^{2,3}, A. Hattori⁴, and K. Hioki⁵

(¹Tohoku University, ²ESICMM, NIMS, ³JASRI, ⁴Daido Electronics Co., Ltd., ⁵Daido Steel Co., Ltd.),

*Present : Osaka University

<u>はじめに</u> 熱間加工 Nd-Fe-B 磁石(HD 磁石)は高い *c*-軸配向性,微細な結晶粒(~300 nm)を有しており,粒 界での磁壁ピニングが保磁力機構の主要因であることが分かっている [1,2].本磁石の磁化過程を評価するた めには Kerr 顕微鏡では空間分解能が十分でなく,磁気力顕微鏡では探針磁気モーメントの反転や磁場中測定 が難しいなどの問題がある.また表面研磨によるダメージの影響も無視できない.一方,SPring-8 BL25SUで 開発された軟 X 線磁気円二色性(XMCD)顕微分光装置では,超真空雰囲気中での試料破断によるダメージ フリー表面での観察が可能であり,また空間分解能は 90 nm と HD 磁石の粒径より十分に小さく,かつ超電 導磁石で磁場中測定が可能である[3].したがって,HD 磁石の各粒界でのピニング磁場のマッピング評価や, その解析による粒界での交換結合評価が可能となることが期待できる.本研究では,磁気特性の異なる HD 磁石に対して XMCD イメージングによる磁化過程評価を行った結果を報告する.

<u>実験方法</u> 残留磁化 1.3 T,保磁力 2.0 T を示す HD 磁石は 0.5×0.5×5 mm³に加工したピラー形状(長軸 // *c*-軸)とし,超高真空雰囲気で約半分の長さに破断した試料を磁場範囲 3T~-3T で XMCD イメージング測定を 行った. XMCD イメージング測定後に Ta 10 nm をコートし, FE-SEM による表面構造観察を行い,XMCD 像と重ね合わせることにより,粒界位置の同定ならびピニング磁場分布の評価を行った.

実験結果 Fig. 1 に示す HD 磁石の残留初磁化曲線から, 0~1.0 T および 1.5~2.0 T の範囲で磁化率が高くなっており, 2 段階の磁化過程をとっていることが分かる. 一般的には 1 段階目が熱消磁状態での多磁区粒子, 2 段階目が粒界での磁壁ピンニングによるものと考えられる. Fig. 2 および Fig. 3 は XMCD 像と粒界トレースを重ねたものであり,それぞれ熱消磁状態ならびに 1.5 T 印加の結果である. 粒径は平均で 260 nm 程度あり,消磁状態の磁区幅は平均で 0.7 µm 程度であった. 磁区幅方向に 2~3 個の粒子が含まれており,熱消磁状態での多磁区粒子は当初の予想ほど多くはないように見える. 2 段階目の磁化過程に相当する 1.5 T では, 多くの磁壁が粒界でピンニングしている様子が確認できるが,一部,粒内で存在している磁壁も確認できる.

curve of the HD magnet.

Fig. 2 XMCD image of thermally demagnetized state of the HD magnet.

Fig. 3 XMCD image of the HD magnet after applying a magnetic field of 1.5 T. 料研究物点の支援の下で行われた

<u>謝辞</u> 文科省「物質・デバイス領域研究アライアンス」及び元素戦略磁性材料研究拠点の支援の下で行われた. 参考文献

J. Liu *et al.* Acta Mater., **82**, 336 (2014).
Okamoto *et al.* J. Appl. Phys. **118**, 223903 (2015).
Y. Kotani *et al.*, J. Synchrotron Radiat. **25**, 1444 (2018).

中性子回折による磁気冷凍材料 R₅Pd₂(R = Ho, Tb)の短距離秩序

北澤英明¹、河村幸彦²、L. Keller³、寺田典樹¹、鈴木博之¹、間宮広明¹、A. Dönni¹、S. Lee⁴、目時直人⁵、金子耕士⁵、井川直樹⁵

(物材機構¹、CROSS 東海²、PSI³、KAERI⁴, 原子力機構⁵)

Short-range ordering of magnetic refrigerant materials R_5Pd_2 (R = Tb, Ho) by neutron diffraction H. Kitazawa¹, Y. Kawamura², L. Keller³, N. Terada¹, H. S. Suzuki¹, H. Mamiya¹, A. Dönni¹, S. Lee⁴, N. Metoki⁵, K. Kaneko⁵, N. Igawa⁵

(¹NIMS, ²CROSS-Tokai, ³PSI, ⁴KAERI, ⁵JAEA)

はじめに

水素は新しいエネルギーキャリアとなり得る候補の一つとして注目されている。水素大量消費社会の実現のためには、従来よりも安価かつ安全に供給するための水素液化技術として、磁気冷凍による液化技術が期待されている。そのためには、液化に必要な温度領域(77K-20K)でより大きな磁気エントロピー変化を示す材料開発が求められている。

立方晶 Dy₅Pd₂型結晶構造を持つ Ho₅Pd₂は、反強磁性体 (T_N = 28K) であるにもかかわらず、水素の沸 点 20K に近い 34 K で非常に大きな磁気熱量効果 (MCE) があるとの興味深い報告が Samanta¹⁾らによっ てなされた。我々は Ho₅Pd₂の磁気構造に興味を持ち、以前、JRR-3 に設置された熱中性子を使った粉 末中性子回折実験を行った。Ho₅Pd₂は T_g (=T_N)以上から k = [0.18, 0.18, 0.18]の不整合伝搬ベクトルを 持った秩序が発達しつつも、低温 5K まで長距離秩序を持たないグラス秩序を取っている事が示唆さ れた。今回、より長周期の情報を得るため、スイス PSI 中性子実験施設 SINQ に設置された冷中性子 回折計 DMC を用いて、参照物質 Tb₅Pd₂ (T_g = 70K)多結晶試料の回折パターンの温度変化を測定した。

実験方法

中性子回折実験は、SINQ(スイス PSI)の冷中性子回折計 DMC (*λ* = 4.507 Å)で行われた。アーク炉で溶解後、800℃で 100 時間程度真空焼鈍された多結晶体を粉末化した試料が実験で用意された。

実験結果

図1に1.5 K ~ 70 Kの温度範囲における中性子粉末回折パ ターンを示す。90 deg 以上に観測された鋭いピークは、核散 乱からの回折パターンである。 $T_g = 28K$ よりも遙かに高い 70K から温度が下降するに従って、低角の 5deg 付近に $k = [\delta, \delta, \delta]$ ($\delta = 0.18$)の幅広いピークが発達して行く様子 が観測された。また、k = [1, 1, 1]のサイドの $k = [1 \pm \delta, 1 \pm \delta, 1 \pm \delta]$ にも幅の広く弱いピークも観測された。 $k = [\delta, \delta, \delta]$ のピークの積分強度を温度の関数としてプロットする と T_g から低温に向かって急激に増加する事がわかった。

Fig. 1 Temperature dependence of neutron powder patters of Ho_5Pd_2 .

<u>謝辞</u>

本研究は、JST 未来社会創造事業「磁気冷凍技術による革新的水素液化システムの開発」(課題 ID:18077503) の一環として実施しました。

<u>参考文献</u>

1) T. Samanta, et. al., Appl. Phys. Lett. 91, 082511 (2007).

Mn 基ホイスラー合金 Mn₂CoGa の磁気的性質と原子配列

梅津理恵^{1,2,3}、斉藤耕太郎⁴、小野寛太⁵、石垣徹⁶、辻川雅人^{2,3,7}白井正文^{2,3,7} (¹東北大金研、²東北大 CSRN、³東北大 CSIS、⁴ポール・シェラー研、 ⁵高エネ研、⁶茨城大、⁷東北大通研)

Magnetic properties and atomic configuration of Mn₂CoGa in Mn-based Heusler alloy

R.Y. Umetsu^{1,2,3}, K. Saito⁴, K. Ono⁵, T. Ishigaki⁶ M. Tsujikawa^{2,3,7}, M. Shirai^{2,3,7}

(¹IMR, Tohoku Univ., ²CSRN, Tohoku Univ., ³CSIS, Tohoku Univ.,

⁴Paul Scherrer Institut, ⁵KEK, ⁶Ibaraki Univ., ⁶RIEC, Tohoku Univ.)

<u>はじめに</u>

Mn₂CoAl ホイスラー合金が Hg₂CuTi 型構造の原子配列をしている場合に、スピンギャップレス半導体型 (SGS-type)の特異な電子状態を有することが第一原理計算より示唆され^{1,2)}、注目されている。しかしながら、 Mn-Co-Al 三元系状態図によると、1273 K 以下では Mn₂CoAl は 2 相領域にあり³⁾、相分離のため単相を得に くいことが想定される。そこで、本研究では関連物質として Mn₂CoGa ホイスラー合金の試料を作製して相状 態を確認し、中性子粉末回折測定より原子配列を決定し、それをもとに電子状態の計算を行った。

<u>実験方法</u>

Mn₂CoGa の多結晶試料は高周波溶解にて作製し、1173 K にて1日間の溶体化熱処理を施した後水中に焼入 れし、773 K にて規則化のための熱処理を行った。規則-不規則相変態温度を調べるために示差走査熱量 (DSC)測定を行い、磁化測定は試料振動型磁力計(VSM)及び SQUID 磁力計を用いて行った。粉砕した粉末 試料は歪除去の熱処理を施し、J-PARC に設置してある茨城県材料構造解析装置(iMATERIA)を用いて飛行時 間法(TOF)により行い、解析には FullProf を用いた⁴⁾。

実験結果

VSM より得た熱磁化曲線より Mn₂CoGa 合金のキュリー温度は約 740 K であることが分かり、DSC 曲線に おいて規則-不規則変態に伴うとみられる反応が約 1050 K において観測された。5 K における磁化曲線のア ロットプロットから算出した自発磁化の値は 2.0 μ_B/f.u.である。

図に、 Mn_2CoGa の室温で測定を行った粉末中性子回折パターンを示す⁵)。 $I_{cal.}$ はFullProfを用いて得た回折 パターンを示し[3]、 $I_{cal.}$ - $I_{exp.}$ は実験で得たパターンとの差を示す。 Hg_2CuTi 型原子配列を仮定した場合より、 Mn と Co 原子がランダムに配列した $L2_{1b}$ 型構造とした場合のほうが R-値は低く、解析より得られた磁気モー メントの値も、理論計算値や磁化測定で得られた自発磁化の値に近いことが判明した。この原子配列は、 HAADF-STEM 像観察による結果と対応している⁶)。 $L2_{1b}$ 型原子配列の Mn_2CoGa に対してコヒーレントポテ

ンシャル近似を用いて第一原理計算を行ったところ、 SGS-type 電子状態は有しないものの、ダウンスピンサ イドのフェルミ面近傍に擬ギャップが形成され、比較 的スピン分極率の高い電子状態であることが分かった。

<u>参考文献</u>

- 1) G. D. Liu et al., Phys. Rev. B 77, 014424 (2008).
- 2) S. Ouardi et al., Phys. Rev. Lett. 110, 100401 (2013).
- 3) R. Kainuma et al., J. Alloys Compd. 269, 173 (1998).
- 4) R. Carvajal, Physica B 192, 55 (1993).
- 5) R.Y. Umetsu *et al.*,J. Phys.: Condens. Matter **31**, 065801 (2019).
- K. Minakuchi *et al.*, J. Alloys Compd. **645**, 577 (2015).

Figure Powder neutron diffraction pattern of Mn_2CoGa Heusler alloy obtained at room temperature, together with the calculated pattern as the $L2_{1b}$ -type structure.

垂直磁化膜のX線磁気線二色性と四極子モーメントの導出

岡林潤¹、飯田裕希^{2,3}、Qingyi Xiang², 介川裕章²、三谷誠司^{2,3}(¹東大理, ²NIMS, ³筑波大) X-ray magnetic linear dichroism in perpendicular magnetized films and estimation of quadrupole moments

Jun Okabayashi¹, Yuki Iida^{2,3}, Qingyi Xiang², Hiroaki Sukegawa², and Seiji Mitani^{2,3}

¹The University of Tokyo, ²NIMS, ³University of Tsukuba

Introduction

X線磁気円二色性(XMCD)は、放射光の左右円偏光の差分として定義され、総和則を用いた解析からスピン と軌道磁気モーメントを導出できる有力な手法である。入射角度 θ 依存性から軌道磁気モーメントの異方性を議 論できる。また、スピン磁気モーメントを正確に求めることは難しく、磁気双極子項 $m_{\rm T}$ (四極子成分)が消失 する $3\cos^2\theta - 1 = 0$ となる 54.7°傾けた配置にてスピン磁気モーメントのみが求められる。一方、放射光の水 平・垂直の直線偏光を用いた X線磁気線二色性(XMLD)は、スペクトル解析から磁気異方性定数 K及び四極子モ ーメント $Q_{\rm ZZ}$ を算出できる手法である。具体的には、以下の総和則により算出される[1,2]。

$$K = \frac{\xi n_h}{2A} \frac{\Delta I_{L3} - 2\Delta I_{L2}}{I_{L3} + I_{L2}}$$
$$\langle Q_{zz} \rangle = \frac{l(2l-1)n_h}{2} \frac{\Delta I_{L3} + \Delta I_{L2}}{I_{L3} + I_{L2}}$$

ここで、*I*とΔ*I*はそれぞれ XAS, XMLD 強度を表す。 ξはスピン軌道結合定数、*n*_hは 3d 空準位数、*I*は軌道角 運動量を表す。*A*は幾何学的配置による係数である。面内磁気異方性を有する試料であれば、面内磁化と縦横 直線偏光の電場ベクトルとの相互作用の有無により、XMLD シグナルが得られる。一方、垂直磁気異方性を有 する場合の XMLD は今までに行われていない。そこで今回、残留磁化状態での垂直磁化試料の XMLD の計測 手法を開発した。これにより、XMLD から算出した垂直磁気異方性エネルギーを評価し、四極子モーメントに ついて XMCD から算出される値と比較検討することを目的とする。

Results

垂直磁気異方性を示す試料にて、ゼロ磁場にて残留磁化がおおよそ飽和磁化と同じ場合には、残留磁化状 態にて60°の斜入射配置にて放射光の水平方向、垂直方向の電場ベクトルでのスペクトルを測定することで XMLDシグナルが得られることが判った。これは試料と放射光の入射角を変えることなく異方性エネルギーを 算出できることになる。一例として、1.2 MJ/m³の垂直磁気異方性エネルギーを有するFe/MgO界面において XMLDスペクトルを計測し、総和則を用いることで異方性エネルギーを評価した。上式を用いた解析では、異 方性エネルギーは500 μeVとなり、これはFe/MgO界面の垂直磁気異方性に相当する。光と磁気が結合する正確 な配置にはならないが、√3/2倍により補正される。これは角度依存XMCDから求めた値とおおよそ一致し[3]、 XMLDの有用性が示された。

磁気双極子モーメント m_T は、 $m_T = -Q_{zz}$ Sの関係により四極子成分 Q_{zz} と関連する。XMCDの角度依存性から も m_T を導出し、 Q_{zz} について議論できる。一方、XMLDと総和則から Q_{zz} を算出し比較した。Fe/MgO界面では、 Q_{zz} は有限ではあるが値は極めて小さく、磁気異方性の起源に m_T の寄与は極めて小さく、軌道磁気モーメント の異方性から説明できることも判った。

References

[1] P. Carra et al., Physica B **192**, 182 (1993).

^[2] S.S. Dhesi et al, Appl. Phys. Lett. 80, 1613 (2002).

^[3] J. Okabayashi et al., Appl. Phys. Lett. 105, 122408 (2014).

TbCo アモルファス垂直磁化膜の磁化反転挙動の温度変化

原子秋乃、櫻井浩、劉小晰*、馬闖*、鈴木宏輔、星和志、辻成希**、櫻井吉晴**、 安居院あかね***

(群馬大、*信州大、**JASRI、***QST)

Temperature dependence of the magnetization switching behavior for a TbCo amorphous perpendicular magnetic anisotropy film

A. Harako, H. Sakurai, X. Liu*, C. Ma*, K. Suzuki, K. Hoshi, N. Tsuji**, Y. Sakurai**,

and A. Agui***

(Gunma Univ, *Shinshu Univ., **JASRI, ***QST)

<u>はじめに</u>

磁気抵抗メモリ(MRAM)等のスピントロニクスデバイスあるいは磁気ストレージメディアにおいて、希土 類遷移金属アモルファス合金の垂直磁気異方性の利用の研究が進められており、反転磁場の制御を目的とし た磁化反転挙動解明の研究が求められている。

これまで我々は磁気コンプトン散乱を利用したスピン・軌道選択磁化曲線、あるいは元素選択磁化曲線の 測定法を開発し¹⁻³⁾、Tb_xCo_{100-x}アモルファス垂直磁化膜の磁化反転挙動の組成依存性を報告してきた⁴⁾。その 結果、スピン・軌道磁気モーメントあるいは Tb・Co 磁気モーメントの磁化反転挙動は同一であることをみい だした。そこで磁化反転挙動の温度依存性について調べることとした。

<u>実験方法</u>1-4)

Tb_xCo_{100-x} (x=12, 14, 16, 18, 20, 22) 膜を Al 基板上に DC スパッタリング法で作製した。EPMA で組成を 確認した。XRD によりアモルファス構造を確認した。SQUID 磁力計を用いて全磁化曲線を求めた。SPring-8 BL08W にて磁気コンプトン散乱実験を行い、スピン選択磁化曲線(SSMH)を求め、全磁化曲線とSSMH の差より軌道選択磁化曲線(OSMH)を求めた。また磁気コンプトンプロファイルを解析して Tb、Co 磁気モ ーメントの元素選択磁化曲線を求めた。

実験結果

Fig.1 は全磁気モーメントの飽和磁化の組成・温度依存性 を示す。全磁気モーメントでは室温で x=17 近傍に磁化がゼ ロとなる磁気補償が観測され、磁気補償組成は温度の低下 とともに Co リッチ側に移動した。元素選択磁化曲線の解析 から、磁気補償組成より Co リッチ側では Co 磁気モーメン トが磁場の方向を向き、Tb リッチ側では Tb 磁気モーメン トが磁場の方向を向いていた。軌道磁気モーメントは Tb 磁 気モーメントの挙動に対応していた。

<u>参考文献</u>

1) A. Agui et al., J. Synchrotron Rad. 17 (2010) 321,

- 2) A. Agui et al., APEX 4 (2011) 083002.
- 3) A. Agui et al., J. Appl. Phys., 114 (2013) 183904.
- 4) A. Agui et al., Mater. Res. Express, 4 (2017) 106108.

フレキシブル基板上 Co 薄膜の面内二軸引張歪みによる垂直磁気異方性制御

松本啓岐^{1,2}、太田進也^{1,2}、小山知弘^{2,3}、千葉大地^{2,3} (¹東大物工、²阪大産研、³阪大 CSRN)

Control of perpendicular magnetic anisotropy of Co thin films formed on a flexible substrate using an

in-plane biaxial tensile strain technique

H. Matsumoto^{1,2}, S. Ota^{1,2}, T. Koyama^{2,3}, D. Chiba^{2,3}

(¹The Univ. of Tokyo, ²ISIR, Osaka Univ., ³CSRN, Osaka Univ.)

<u>はじめに</u>

柔らかい有機フィルム上へ製膜した強磁性体薄膜の磁化方向は%オーダーの巨大な一軸引っ張り歪みによ り制御可能なことが知られている^{1,2)}。一方で、一軸引っ張り歪みを加えると、それと垂直な向きに圧縮歪み も生じる(ポアソン効果)。fcc(111)配向した Co 薄膜では、面直方向へ圧縮歪みを加えることにより垂直磁気 異方性の誘起が期待される³⁾。しかし、一軸引っ張り歪みでは面内方向へ誘起される磁気異方性の方が大き く、この効果が十分に確かめられてこなかった^{1,4)}。本研究では、面内に二軸引っ張り歪みを印加する手法を 用いて面直方向にのみ圧縮歪みを加え、Co 薄膜の磁化容易軸を面内から面直方向へスイッチすることに成功 した。

<u>実験方法</u>

Ta/Pd(2.0nm)/Co(0.9nm)/Pd(2.0nm)という構造をフレキシブルなポリエチレンナフタレート基板上へ直接ス パッタ製膜した。フォトリソグラフィーとアルゴンイオンミリングによってホールバー形状へ加工し、ホー ルバーが中心に来るようにして基板を十字型に切り出した。十字基板の四方をつかみ治具で押さえ、治具の 間隔を自動制御することで二軸方向へ加える引っ張り歪みの量を調節した。こうして加えた異なる歪み量に 対して、面直方向へ磁場を掃引しながら異常ホール抵抗値ループの測定を行った。

<u>実験結果</u>

Figure に、加えた二軸歪み量を ε = 0.0%, 0.5%, 1.0%としたそれぞれの場合についての異常ホール抵抗値ループの測定結果を示した。歪みを加えていない場合(ε = 0.0%)、ループ形状は印加磁場に対して直線的であり、試料が面内容易であることを示している。 ε = 0.5%へ歪み量を増加させると面直方向への飽和磁界が減少しているのがわかる。これは、二軸引っ張り歪みがCo薄膜へ垂直磁気異方性を誘起していることを示している。 ε = 1.0%とした場合には角型のヒステリシス曲線が得られており、二軸引っ張り歪みによって磁化容易軸が面直方向へ変化したことを表している。この面内方向から面直方向への磁化容易軸の歪みによる変化は、Coに接する二つのPd層の片方または両方をPt層へ置換した試料においても同様に観測された。

<u>参考文献</u>

- 1) S. Ota et al., Appl. Phys. Express. 9 (2016) 043004.
- 2) R. Asai et al., J. Appl. Phys. 120 (2016) 083906.
- 3) H. Takahashi et al., J. Magn. Magn. Mater. 126 (1993) 282.
- 4) S. Ota *et al.*, Nat. Electron. **1** (2018) 124.

Figure: The result of anomalous Hall measurements under 0.0%, 0.5%, 1.0% biaxial tensile strain.

ピエゾエレクトロニック磁気トンネル接合の圧力印加構造の評価

浦下 宗輝,北川 涼太,小野澤 隼,スタットラー 嘉也,春本 高志*,史 蹟*, 中村 吉男*,高村 陽太,中川 茂樹

(東京工業大学 工学院 電気電子系,*東京工業大学 物質理工学院 材料系)

Characterization of the pressurized structure of piezo-electric magnetic tunnel junctions

S. Urashita, R. Kitagawa, H. Onozawa, Y. Stutler, T. Harumoto*, J. Shi*,

Y. Nakamura^{*}, Y. Takamura, S, Nakagawa

(Dept. of Electrical and Electronic Eng., Sch. of Eng., Tokyo Inst. of Tech., *Dept. of Materials Science and Eng., Sch. of Materials and Chemical Tech., Tokyo Inst. of Tech.)

はじめに

我々の研究グループが提案するピエゾエレクトリック磁気トンネル接合(PE-MTJ)^{1,2)}は,超磁歪材料でフリ ー層を構成した MTJ とその周囲に形成された圧電体及びリング上の電極による圧力印加構造から成る不揮 発性メモリ素子である.この PE-MTJ の磁化反転時には,圧電体により MTJ に圧力を印加し磁化反転のた めのエネルギーバリアを下げる応力アシストが可能であり,従来の MTJ より劇的に小さな電流密度で磁化 反転が行える.この PE-MTJ を実現するためには,圧力印加構造の動作検証を行う必要があり,これまでに 我々のグループでは PE-MTJ の MTJ 部分を W/SmFe₂/W の単純な3層構造で置き換えた試料において,圧電 体に電圧印加することで磁化特性の変化を確認した³⁾.本研究では圧電体への印加電圧と磁化特性の関係を より詳細に調べ,評価を行ったので報告する.

実験方法

Fig. 1 に作製した圧力印加構造を示す. 試料は W/SmFe₂/W の 3 層構造から成る直径 10 μm の円柱とその 周りに形成した圧電体 AlN 及び AlN の上下に作製したリング上の電極から構成される. 3 層構造は対向タ ーゲット式スパッタ法を用いて熱酸化 Si 基板上に成膜した. AlN⁴)は室温で反応性スパッタ法で成膜した. 試料の微細加工にはフォトリソグラフィ技術やイオンミリング装置などを用いた. 圧力印加時の磁化特性は 振動試料型磁力計(VSM)を用いて評価した. また, この VSM の測定において十分なシグナル強度を得るた めに, 1 試料につき円柱を約 10 万個集積した.

実験結果

Fig. 2 に圧力印加構造中の SmFe₂ 円柱の磁化特性を示す. 圧電体に 電圧を印することで,僅かに磁化特性が変化した. これは,圧力印 加構造から発生した圧力により逆磁歪効果を介して SmFe₂の磁気異 方性が変化したことを示している. また,電圧に比例した圧力が印 加されていることを確認した. 以上より, PE-MTJの実現に向けた圧 力印加構造において磁化特性の変化を確認した.

謝辞

本研究の一部は東芝メモリ株式会社の資金援助を受けた.本研究 の一部は,文部科学省のナノテクノロジープラットフォームの支援 を受けて実施された.本学菅原聡准教授に感謝します.

参考文献

- 1) S. Sugahara, et al.: 2017 IEEE S3S, 1 (2017).
- 2) Y. Takamura, et al.: Solid-State Electronics, 128, 194 (2017).
- 3) 北川 涼太他: 粉体粉末冶金協会第 123 回講演大会, 1-32A (2018).
- 4) T. Harumoto, et al.: J. Appl. Phys., 113, 084306 (2013).

Fig. 1. Schematic of a sample structure

for the St

25pB - 5

Fe 系二元合金薄膜における面内および面直ダンピングの比較

遠藤恭, Nguyen Thi Van Anh, 川邉泰之, 島田寛(東北大学) Comparison Between In-plane Damping and Out-of-plane Damping in Fe Binary Alloy Thin Films Y. Endo, T. V. A. Nguyen, Y. Kawabe, Y. Shimada (Tohoku Univ.)

はじめに

強磁性共鳴(Ferromagnetic Resonance: FMR)測定は、バルクや薄膜からなる強磁性材料のダンピング定数(a) を評価できる計測法の1つである¹⁾. 近年、ベクトルネットワークアナライザ(VNA)と高周波伝送線路を 組み合わせたブロードバンド強磁性共鳴(Broadband FMR: B-FMR)測定法が広く利用されている²⁴⁾. FMR 測定法では、試料面に対する外部磁界の印加方向によって磁化の不均一モードの発生の有無が指摘されてい るものの、B-FMR測定法に限ってはその詳細について幅広い材料を用いて比較検討した例はほとんどない. 本研究では、Fe系二元合金(Fe-M)を磁性薄膜材料として選択し、Fe-M薄膜における面内および面直ダン ピングを B-FMR測定法により評価し、比較検討を行った.

実験方法

10 nm 厚の Fe-M (M=Ni, Si, Co, Ga) 薄膜を,ガラス基板上に DC マグネトロンスパッタを用いて作製した. これらの薄膜の組成分析は EDX 用いて行った.作製した薄膜の動的磁気特性に関しては,試料の膜面平行に 外部磁界を印加する場合には電磁石(最大 3 kOe)を,また試料の膜面垂直に外部磁界を印加する場合には超 伝導マグネット(最大 90 kOe)を,それぞれ用いて VNA と伝送線路を組み合わせた B-FMR 測定法を用いて 評価した.なお,測定はすべて室温で行った.また,これらの薄膜の他の特性の詳細は他の文献に記載済み である^{4.5)}.

結果および考察

表1に、Fe-M(M=Ni, Si, Co, Ga)薄膜における有効飽和磁化,面内および面直ダンピングを示す.有効飽和 磁化に関しては、面内方向の場合、VSMを用いて評価した飽和磁化値(4πM_s)に比べて高くもしくは低くな った.この原因は表面磁気異方性の大きさによるものと考えらえる.また、面直方向の場合、VSMによる4πM_s とほぼぼ一致している.一方、ダンピングに関しては、M=Niの場合には、試料の膜面に対する外部磁界の 印加方向によらずほぼ面内ダンピングと面直ダンピングの値はほぼ同程度であり、材料固有のダンピングが 観測できることを示している.一方で、M=Si, Co, Ga の場合には、膜面に対する外部磁界の印加方向に依存 し、面内ダンピングが面直ダンピングに比べて 2~5 倍高くなった.この原因は、膜面平行に外部磁界を印加 する場合 2-マグノン散乱もしくは異方性分散などの磁気的な不均一性による不均一モードが発生することに

よるものと考えられる.以上のように、材料によっ て外部磁界の印加方向を慎重に選択する必要がある ことを示唆している.

謝辞

本研究の一部は、東北大学先端スピントロニクス研 究開発センター、東北大学スピントロニクス学術連 携研究教育センター、東北大学国際集積エレクトロ ニクス開発センターおよび情報ストレージ推進機構 (ASRC)の支援のものと行われた。また、本研究の 一部は、科研費基盤研究(B)(No. 17H03226)の補 助のもとで行われた.

<u>参考文献</u> 1) J. H. E. Griffiths, Nature 148, 670 (1946)., 2) G. Counil et al., JAP 95, 5646 (2004)., 3) M. Toda et al., JMSJ 31, 435 (2007)., 4) Y. Endo et al., JAP 109, 07D336 (2011)., 5) Y. Kawabe et al., TMSJ 3, 34 (2019) 他.

Table 1 Comparison between in-plane and out-of-plane dynamics for Fe-M binary alloy films.

Materials (Fe-M)	Fe-Ni (Fe ₂₂ Ni ₇₈) (M=Ni)	Fe-Si (Fe ₈₇ Si ₁₃) (M=Si)	Fe-Co (Fe ₈₈ Co ₁₂) (M=Co)	Fe-Ga (Fe ₇₆ Ga ₂₄) (M=Ga)
4πM _{s, //} [kG] in case of external magnetic field // film plane	12.64	13.40	17.36	11.18
$4\pi M_{s, \perp}$ [kG] in case of external magnetic field \perp film plane	10.04	15.04	23.24	13.93
$4\pi M_s~[kG]$ by VSM	10.38	15.05	19.86	14.61
In-plane damping ($\alpha_{//}$) in case of external magnetic field // film plane	0.00626	0.01082	0.03321	0.02600
Out-of-plane damping (α_{\perp}) in case of external magnetic field \perp film plane	0.00641	0.00545	0.00722	0.00741

MOD 法により作製した Bi:YIG/Pt 熱電変換デバイスの スピンゼーベック電圧と表面構造に及ぼす熱処理の効果

髙橋優太、高瀬つぎ子、山口克彦 (福島大) Annealing effect of spin Seebeck voltage and surface structure of

Bi:YIG/Pt thermoelectric conversion device made by MOD method

Y. Takahashi, T. Takase, K. Yamaguchi

(Fukushima Univ.)

はじめに

磁性絶縁体に生じる温度勾配によってスピン流が生成するスピンゼーベック効果(SSE)は、金属膜を介して 電流に変換することができ、熱電変換として注目されている. SSE を用いた熱電変換デバイスは、面積を拡 大することにより、出力が容易に増大するという特徴を有する¹⁾.本研究では、安価かつ大面積化に応用可 能な金属有機化合物分解(MOD)法を用いて、多結晶ビスマス置換イットリウム鉄ガーネット(Bi:YIG)膜を作製 し、白金(Pt)膜積層後の熱処理がスピンゼーベック電圧と表面構造に対して及ぼす効果を報告する.

実験・結果

MOD 法を用いて、厚さ 0.45mm の石英ガラス基板上に多結晶 BiYIG 膜を 300~400nm 製膜した後、簡易ス パッタ装置(Ar・10Pa)を用いて Pt 膜を 10nm 積層した. さらに、試料全体を大気圧下で 300℃から 700℃の範 囲を 50℃刻みでそれぞれ 1hour の熱処理を行い、Pt 膜の膜質の改善を行った. Fig.1 に試料の上部と下部間の 温度勾配を 3K 程度とし、各熱処理温度で作製した試料のスピンゼーベック電圧の測定結果を示す. 今回測 定に用いる Bi:YIG/Pt 試料のサイズは 7mm×13mm とした. また、Fig.2 に 400, 500, 600, 700℃の熱処理温度 で作製した試料の表面構造を走査型電子顕微鏡 (SEM)により観察した結果を示す.

Fig.1 より熱処理温度 600℃においてスピンゼーベック電圧が最大となり,熱処理温度が低くなるにつれス ピンゼーベック電圧が小さくなっていることが確認できる.また,熱処理温度 700℃においてはスピンゼー ベック電圧を確認することができなかった. Fig.2 より試料表面の Pt 膜の島状構造の凝縮度合いが熱処理温 度によって異なり,スピンゼーベック電圧の出力強度に影響を及ぼしているものと考えられる.

Fig.1 Spin Seebeck voltage at each annealing temperature

Fig.2 Surface structure of samples annealed at (a)400°C and (b)500°C and (c)600°C and (d)700°C by SEM

参考文献

¹⁾ A. Kirihara, K. Uchida et al., Nature Materials Vol. 11, No. 8, (2012) ,686-689.
周波数掃引強磁性共鳴における共鳴吸収半値幅

川井哲郎・武田 茂*・大竹 充

Resonance absorption peak-width on frequency-sweep ferromagnetic resonance

Tetsuroh Kawai, Shigeru Takeda*, and Mitsuru Ohtake

(Yokohama National University, *Magnontech, Ltd.)

はじめに スピントロニクスの進展に伴い磁性薄膜の強磁性共鳴(FMR)の挙動が注目されている¹⁾. 従来の FMR は空洞共振を利用した磁場掃引が主流であったが, GHz 帯まで測定可能なベクトルネットワークアナラ イザ(BNA)の普及に伴い周波数掃引 FMR 測定が数多く行なわれるようになった.しかし,その共鳴吸収半値 幅の共鳴周波数依存性は複雑な挙動を示すことが知られている²⁾.本報告ではパマーマロイ薄膜の周波数掃 引 FMR 測定を行い,共鳴吸収半値幅と印加した静磁場(*H*)および共鳴周波数(*f*_c)依存性について解析した. **実験方法** 厚さ 200 nm (4×4 nm 角)のパーマロイ薄膜を全シールド型マイクロストリップライン冶具に配 置し,1 kOe までの静磁場を膜面内に印加して周波数掃引 FMR 測定を行なった³⁾. 上限の周波数は 10 GHz である.共鳴吸収半値幅(Δf)を実測し,その *H* および *f*_c 依存性を解析した.

実験結果と考察 共鳴吸収ピークの測定例を Fig.1 に示す.明瞭なローレンツ型の吸収が観測された. μ "の ピーク周波数を f_r , その半値幅を Δf とした. *H*を変化させて測定した Δf を Fig.2 に示す. *H*が小さい時 Δf は 大きく, *H*が大きくなると共に Δf は低下するが, その後測定した磁場の範囲では Δf はほとんど変化しない. 一般に *H*が小さい時に Δf が大きいのは磁気的不飽和のためと考えられるが,本実験では 50 Oe でパーマロイ 膜は充分飽和している. そこで, Δf を ΔH に換算し, その f_r 依存性から $\Delta H_0(f_r$ に依存しない項)と Gilbert ダン ピング定数(α)を求めた. 求めた ΔH_0 (6.2 Oe)と α (0.00758)を使って Δf の *H*依存性を計算すると Fig.2 の実線に 示すように実測と良く一致した. したがって,周波数掃引 FMR では Δf の挙動に ΔH_0 が大きく影響することが わかる. すわち,磁場掃引では ΔH_0 は f_r に依存しない項であるが,周波数掃引では ΔH_0 が f_r に依存する項とし ても現れることが明らかになった.

謝辞 軟磁気特性に優れたパーマロイ薄膜をご提供頂いた東北大学名誉教授 宮崎照宣 先生,東北大学教授 水上成美 先生に厚くお礼申し上げます.

参考文献

- 1) J. C. Slonczewski, J. Magn. Magn. Matter., 159, L1 (1996).
- 2) B. K. Kuanr, R. E. Camley, and Z. Celinski, J. Magn. Magn. Matter., 286, 276 (2005).
- 3) S. Takeda and H. Suzuki, J. Magn. Soc. Jpn., 33, 171 (2009).

Fig. 2 Measured (circles) and estimated Δf for the permalloy film as a function of *H*.

遍歴電子磁性の最近の展開と二次元遍歴電子強磁性体

ACo₂X₂系(A=アルカリ金属,アルカリ土類; X=P, As, Se)

吉村一良¹、森山広大¹、奈良建佑¹、村川譲一¹、今井正樹^{1,2}、太田寛人^{1,3}、楊 金虎^{1,4}、道岡千城¹、 植田浩明¹、松尾 晶⁵、金道浩一⁵、高橋慶紀⁶

(1京大、2原研・先端基礎研、3東京農工大、4杭州師範大、5東大・物性研、6兵庫県立大)

Recent Development of Itinerant-Electron Magnetism and 2D Itinerant Ferromagnetic System, ACo_2X_2 System (A= Alkaline and Alkaline Earth Elements; X=P, As, Se)

K. Yoshimura¹, K. Moriyama¹, K. Nara¹, J. Murakawa¹, M. Imai^{1, 2}, H. Ohta^{1, 3}, J. Yang^{1, 4}, C. Michioka¹, H. Ueda¹, A. Matsuo⁵, K. Kindo⁵ and Y. Takahashi⁶

(¹Kyoto Univ., ²JAEA, ³Tokyo Univ. of A&T, ⁴Hangzhou Normal Univ., ⁵Univ. of Tokyo, ⁶Hyogo Univ.)

緒言

鉄砒素(Fe-As)の二次元面を基調とした高温超伝導体[1]の関連物質として、同構造のコバルト化合物である LaOCoAs において、新たな二次元遍歴電子強磁性的振る舞いが見出された[2]。その強磁性の振る舞いは、 スピンゆらぎ理論の新しい展開[3]によって、理論構築された新たな臨界現象である「強磁性臨界点では磁化のアロット・プロット(*M² vs H/M*)ではなく、磁化の4乗プロット(*M⁴ vs H/M*)に従う」ことが明らかになり、遍歴電子強磁性の新たな発展へと結びついている。また、122構造の Co 化合物 *B*Co₂P₂(*B*=Ca, Sr, Ba, *R*)系において遍歴電子磁性が見出されている[4-6]。

<u>実験方法</u>

本二次元 Co 化合物系の合成を固相反応法およびフラックス法により行った。また、合成された試料の X 線回折による構造の解析、電気抵抗・磁気・比熱といったマクロ物性評価、パルス強磁場を用いた強磁場磁 化過程の測定、核磁気共鳴・緩和(NMR)によるミクロ物性評価測定を行い、その実験結果と遍歴電子系につ いてのスピンゆらぎ理論との定量的な比較検討を行った。

<u>実験結果</u>

LaCoAsO 系や LaCo₂P₂系, ACo_2Se_2 系は、Co を基調とした二次元遍歴電子強磁性を示すことが明らかに なっているが[2,4,5]、その際、強磁性臨界点近傍では磁化のアロット・プロット (M^2 vs H/M)が上に凸で直 線とならず、磁化の四乗プロット (M^4 vs H/M)が直線的となることが明らかになっている[3]。この振舞い は、磁化が臨界点で連続であり、また、スピンゆらぎのゼロ点ゆらぎの項と熱ゆらぎの項の総和が一定であ ると言うことを仮定した、スピンゆらぎの新しい理論展開によって明らかになった振舞いとよく一致する。 また、SrCo₂P₂ は二次元の交換増強された Pauli 常磁性体であって、50T 程度の強磁場を印加することによっ て常磁性から強磁性へと転移する、いわゆる遍歴電子メタ磁性転移が見出され注目されているが、パルス強 磁場による Sr_{1-x}Ca_xCo₂P₂ (x<0.5)についての強磁場磁化測定の結果、x=0, 0.2では遍歴電子系のメタ磁性転移が 二段に観測されることが明らかになった[5]。この二段の遍歴電子メタ磁性転移はスピン揺らぎを繰り込んだ 理論でないと説明できないことが明らかとなった。さらに LaCo₂P₂の単結晶を用いて NMR 測定を行い[6]、 スピンゆらぎの理論によって定量的に解析し、二次元遍歴電子強磁性の振る舞いを微視的に明らかにするこ とができた。講演では、最近単結晶合成に成功した $A_2Co_12P_7$ (A=Mg, Ca)についても報告する予定である。

<u>参考文献</u>

[1] Y. Kamihara, H. Hosono et al., J. Am. Chem. Soc. 130, 3296 (2008),

- [2] H. Ohta and K. Yoshimura, Phys. Rev. B 79, 184407 (2009).
- [3] 高橋・吉村、"遍歴磁性とスピンゆらぎ" (内田老鶴圃, 2012).
- [4] J. Yang, K. Yoshimura and M. Fang et al., Phys. Rev. B 88, 064406 (2013).
- [5] M. Imai, C. Michioka, K. Yoshimura et al., Phys. Rev. B 90, 014407 (2014).
- [6] M. Imai, C. Michioka, H. Ueda, and K.Yoshimura, Phys. Rev. B 95, 054417 (2017).

二次元近藤格子系 EuSn₂As₂の熱電変換性能

坂上良介¹, 狩俣春成¹, 後藤陽介², 東伸彦¹, 平田昂輝¹, 中西愛¹, 岩崎秀¹, 山口道太郎¹, 北脇樹¹, 水口佳一², 的場正憲¹, 神原陽一¹

(1慶大,2首都大)

Thermoelectric Properties of Two-Dimensional Kondo Lattice, EuSn₂As₂

R. Sakagami¹, H. Karimata², Y. Goto², N. Azuma¹, K. Hirata¹, M. Nakanishi¹, S. Iwasaki¹, M. Yamaguchi¹,

I. Kitawaki, Y. Mizuguchi, M. Matoba¹, Y. Kamihara¹

(¹Keio Univ., ²Tokyo Metropolitan Univ.)

1. 緒言

熱電変換材料候補として強相関電子系が注目されている¹⁾. Eu の 4f 電子を含む六方晶層状化合物 EuSn₂As₂ は,強相関電子系の一種、二次元近藤格子系である. EuSn₂As₂の結晶は、Fig. 1 (a) に示すように、Eu²⁺の孤立カ チオン (♯) と、van der Waals 力 (‡) で弱く結合した 2 枚の[Sn₂As₂]²⁻アニオン層 (§) とが交互に積層した構造 である²⁾. Arguilla らにより、EuSn₂As₂の配向結晶の磁化率の温度依存性が測定され、Eu²⁺層間での反強磁性的 または傾角反強磁性的な磁気秩序および Eu²⁺層内での強磁性的な磁気秩序が示唆された. 室温での EuSn₂As₂ 単結晶の c 軸に垂直な方向の電気抵抗率 (ρ) は 0.73 m Ω cm であった²⁾. 電子状態計算で得られたバンド分散 では、Eu の 4f 電子由来の平坦なバンドが得られた³⁾. この平坦バンドは、特異的な磁性のみならず、高い Seebeck 係数 (*S*) を導くと期待される. 本研究では、EuSn₂As₂の電力因子 ($P \equiv S^2 \rho^{-1}$)の温度依存性を調べる.

2. 方法

Sakagami らの方法³⁾ で合成した EuSn₂As₂試料を,粉末化し,一軸加圧によりホットプレス (HP) した.一軸加圧方向に垂直な方向 (P_{\perp}) における HP 試料の ρ および S の温度依存性を測定した.

3. 結果

EuSn₂As₂を主相とする HP 試料の P_⊥方向の ρ の温度依存性を Fig. 1 (b) に, S の温度依存性を Fig. 1 (c) に示 す. 673 (2) K での HP 試料の P_⊥方向での ρ は 0.50(3) m Ω cm であり, S は 52(1) μ V K⁻¹ であった.

4. まとめと今後の展望

673(2) K において, EuSn₂As₂を主相とする HP 試料の P₁方向での P は 0.54(4) mW m⁻¹ K⁻² であった. 今後は, EuSn₂As₂の電子状態を計算し, 輸送特性を解釈する.

Fig. 1 (a) A crystallographic structure of $\text{EuSn}_2\text{As}_2^{2^2}$ in hexagonal axes. The music sharp sign, section sign, and up down arrow denotes Eu^{2+} cations, $[\text{Sn}_2\text{As}_2]^{2-}$ anions bilayer, and van der Waals bonding, respectively. The structure is reproduced from Sakagami *et al.*³ (b) Electrical resistivity (ρ) and (c) Seebeck coefficient (*S*) as a function of temperature (*T*) for a hot-pressed (HP) sample of EuSn₂As₂ measured perpendicular (P_{\perp}) to the pressing direction in a hot pressing process.

<u>参考文献</u>

- 1) I. Terasaki, J. Mag. Soc. Jpn. 27, 172 (2003). in Japanese
- 2) M. Q. Arguilla et al., Inorg. Chem. Front. 4, 378 (2017).
- 3) R. Sakagami et al., Mater. Sci. Tech. Jpn. 55, 72 (2018). in Japanese

二層系層状ペロフスカイト構造を有する Ca₃Ru₂O₇の磁気熱量効果

菊川直樹, Chanchal Sow*, 前野悦輝*, 辻井直人, 櫻井裕也 (物質・材料研究機構, *京都大学)

Magneto-caloric effect of a bi-layered perovskite ruthenate Ca₃Ru₂O₇ N. Kikugawa, C. Sow, Y. Maeno, N. Tsujii, and H. Sakurai (National Institute for Materials Science, Kyoto University)

<u>はじめに</u>

二層系層状ペロフスカイト構造を有するルテニウム酸化物 Ca₃Ru₂O₇(空間群: Bb21m)は RuO₂ 面が物性を担い¹⁾, ゼロ磁場下では温度 56 K で a 軸方向に磁化容易軸となる反強磁性秩序, さらに 48 K で 1 次の構造相転移とそれに伴う磁化容易軸が b 軸方向へ変化した反強磁性秩序状態を示す²⁾. 浮遊帯域法で得られた単結晶により,低温まで金属伝導を示すこと,また量子振動測定³⁾や角度分解光電子分光測定⁴⁾により,この物質が基底状態では擬 2 次元性の少数キャリア系であることが報告されている.また,RuO₂ 面方向への磁場印加によりメタ磁性を示し,それに伴う結晶格子・電気伝導の変化が観測され⁵⁾,さらには最近,反強磁性状態からのメタ磁性への転移近傍で変調した磁気構造を有することが明らかになった⁶⁾. このような多様な物性を示す Ca₃Ru₂O₇において,熱力学的性質を明らかにすることを目的に b 軸方向への磁場印加による磁化測定について報告する.

<u>実験方法</u>

本研究で用いた Ca₃Ru₂O₇単結晶は浮遊帯域法で育成した.X線背面ラウエ法により結晶軸方向を確認し, さらには同じバッチの試料において,低温まで金属的伝導を示すことを確認している.磁化測定は,Quantum Design 社の SQUID 磁束計(MPMS)を用い,80 Kまでの温度(T)でおこなった.

<u>実験結果</u>

右図に、5 T までの磁場下での磁化(*M*)の温度依存性を示す.これらの測定は磁場中冷却下にておこなった ものである.反強磁性転移点である 56 K 以上での磁化は Curie-Weiss 則によく従い, Ru⁴⁺(4*d*⁴)の低スピン状 態におけるスピン *S*=1の描像でよく説明できる.また,低磁場での 56 K,48 K での転移が,それぞれ磁場の 増大とともに変化していることがわかる.本講演では、7 T までの磁化測定の結果を加えた上で, Maxwell 関

係式
$$\Delta S = \int \frac{\partial M}{\partial T} dH$$
を用いたエントロピー変化 ΔS を評

価し, b 軸方向への磁場印加における磁場-温度相図との対応について報告する.

参考文献

- 1) G. Cao et al., Phys. Rev Lett. 78, 1751 (1997).
- 2) B. Bohnenbuck et al., Phys. Rev. B 77, 224412 (2008).
- N. Kikugawa *et al.*, J. Phys. Soc. Jpn. **79**, 024704 (2010).
- F. Baumberger *et al.*, Phys. Rev Lett. 96, 107601 (2006).
- 5) E Ohmich *et al.*, Phys. Rev. B **70**, 104414 (2004).
- 6) D.A. Sokolov *et al.*, Nat. Phys. 15, (2019).
 (DOI: 10.1038/s41567-019-0501-0)

細孔構造スクアリン酸金属錯体の磁性

宮古雅大、野本尚之、藤原隆司、澤田祐也*、木田孝則*、萩原政幸*、鎌田憲彦、本多善太郎 (埼玉大院理工、*阪大先端強磁場)

Magnetic properties of porous squarate metal complexes

M. Miyako, N. Nomoto, T. Fujihara, Y. Sawada*, T. Kida*, M. Hagiwara*, N. Kamata, and Z. Honda (Saitama Univ., *AHMF, Osaka Univ.)

<u>はじめに</u>

複数の金属に配位結合する分子やイオン(架橋配位子)を含む多核金属錯体は金属上に磁気モーメントが局 在し、架橋配位子を介して超交換相互作用が働くため、スピン系の良い候補物質となることが知られている。 一般に超交換相互作用は反強磁性的であるが、OH 配位子が金属間を約 90°で架橋することで、強磁性的にな ることが知られている。一般に OH 分子は架橋配位子になりにくいが、カルボン酸をスペーサーに用いること で架橋配位子となることが知られている。そこで、スペーサー配位子にスクアリン酸(sqa)を選定し、各遷移金 属水酸化物との水熱反応により OH 架橋多角金属錯体の物質探索を行った。その結果、sqa と Cu, Co の組み合 わせにおいて M3(OH)2 鎖が sqa により架橋され、細孔構造を形成した多核金属錯体の微小結晶を得た(Fig. 1)。

M₃(OH)₂鎖が強磁性、又はフェリ磁性を示す場合、単一鎖磁石となる可能性がある。そこでこれらの金属錯体の結晶構造を単結晶 X 線構造解析法により調査し、磁気測定の結果から鎖内のスピン 配列を考察した。

<u>実験方法</u>

各種遷移金属塩水溶液に NaOH 水溶液を加え、十分に撹拌を 行った。その後、テフロン容器に sqa とともに移送し、電気炉 を用い水熱反応により結晶を育成した。その際、加熱温度と加 熱時間を検討した。各試料の構造解析には粉末 X 線回折及び単

結晶 X 線解析法を用い、各種試料の磁気測定を超伝導量子干渉素子磁束計 及びパルス磁化測定システムにより行った。

<u>実験結果</u>

Co(OH)₂と sqa の 200℃における水熱反応の結果、細孔構造 多核錯体 [Co₃(OH)₂(C4O₄)₂]・3H₂O ①の赤紫色微結晶、Cu(OH)₂ と sqa の 140℃における水熱反応の結果、類似構造の [Cu₃(OH)₂(C4O₄)₂]・2H₂O ②の緑色微結晶が得られた。磁気測定 の結果、① は温度 2 K でかぎ型の磁化曲線を示し、磁化率が 8 K 以下で急激に増加した。一方、②は磁化曲線の傾きが緩やかで あり、反強磁性的であった(Fig. 2)。①は M₃(OH)₂ 鎖に沿った M-O-M 結合角が 90° に近く、予想通り強磁性的な超交換相互作 用が働いていると思われる。一方、②は Cu²⁺イオンのヤーン・ テラー効果により、一部の Cu-O 距離が増加したことにより、 M₃(OH)₂ 鎖内の超交換相互作用が反強磁性的になったと考えら れる。当日詳細を報告する。

Fig. 1. $M_3(OH)_2$ chain of $[M_3(OH)_2(C_4O_4)_2] \cdot nH_2O$.

Fig. 2. Magnetization *M* vs. magnetic field *H* curves for $[M_3(OH)_2(C_4O_4)_2] \cdot nH_2O$.

一次元金属錯体 M(sba)(H₂O)₂·H₂O (M = Co, Cu)の磁気異方性

野本尚之、藤原隆司、澤田祐也*、木田孝則*、萩原政幸*、鎌田憲彦、本多善太郎 (埼玉大院理工、*阪大先端強磁場)

Magnetic anisotropy of one-dimensional metal complexes $M(sba)(H_2O)_2 \cdot H_2O$ (M = Co, Cu) N. Nomoto, T. Fujihara, Y. Sawada*, T. Kida*, M. Hagiwara*, N. Kamata, and Z. Honda (Saitama Univ., *AHMF, Osaka Univ.)

はじめに

複数の金属に分子やイオンが架橋配位して形成される多核金属錯体は、金属イオン上に磁気モーメントが局在し、架橋配位子を介して超交換相互作用が働くため、一次元や二次元磁性体の良い候補物質となる。このうち、一次元強磁性体は一軸磁気異方性が強い場合、単一鎖磁石の性質を示すことから、高密度磁気記録デバイス等への発展応用が期待される。一般に架橋配位を介した超交換相互作用は反強磁性的であるが、90。結合したH2Oを架橋配位子とする金属錯体は強磁性を示すことが知られている。そこで磁性源に磁気異方性の強いコバルトイオンを選定し、H2O架橋配位子を安定化させるカルボン酸を含む錯体を物質探索した結果、強磁性を示すH2O架橋型の一次元金属錯体

Co(sba)(H₂O)₂·H₂O (sba : *p*-スルホ安息香酸)を得た。本研究では 溶媒蒸発法により *M*(sba)(H₂O)₂·H₂O (*M* = Co, Cu)の単結晶育成 を進め、その結晶構造と磁性、特にその磁気異方性を明らかに することを目的とした。

<u>実験方法</u>

硝酸コバルト、硝酸銅と sba の水溶液に、アンモニア水を水 酸化剤として加え、恒温槽で一定温度を保ち溶媒を蒸発させる ことで、過飽和溶液から結晶を育成した。錯体結晶の構造解析 には単結晶 X 線構造解析法を用いた。また、磁気測定は SQUID 磁束計を用い、単結晶の各結晶軸に磁場を印加して磁化 を測定した。

<u>実験結果</u>

結晶成長条件を精査した結果、 $M(sba)(H_2O)_2 \cdot H_2O (M = Co, Cu)の単結晶(長さ約1mm)を得ることに成功した。単結晶 X$ $線構造解析の結果、金属錯体 Co(sba)(H_2O)_2 \cdot H_2O は 2 つの$ $H_2O が Co イオン間を約 90 ° で架橋配位して b 軸方向に伸$ 長した一次元鎖を形成し、鎖間が sba により保持された構造であった(Fig. 1)。単結晶の長手方向に対して垂直に外部 $磁場を加えると、飽和磁化値が <math>3.8\mu_B$ の強磁性的な磁化曲線 を示したが保磁力は小さく、約 100 Oe であった。一方、磁 場を結晶長手方向に印加した場合、磁化値はほとんど増加 せず、磁場 70 kOe まで $1\mu_B$ 以下の値をとることが分かった (Fig. 2)。一方、Cu(sba)(H_2O)_2 \cdot H_2O の磁化値は磁場印加方向 にほとんど依存しなかった。金属錯体単結晶を用いた磁気 測定により Co(sba)(H_2O)_2 \cdot H_2O が極めて強い磁気異方性を示 すことを明らかにした。当日詳細を報告する。

 $Co(sba)(H_2O)_2 \cdot H_2O.$

Fig. 2 . Magnetization M vs. magnetic field H curves for Co(sba)(H₂O)₂·H₂O.

低キュリー温度 CoPd/Pd 多層膜を用いた ハイブリッドメモリ層の STT 磁化反転の温度依存性

趙望臻、加藤剛志、大島大輝、園部義明*、高橋茂樹*、岩田聡

(名古屋大学,*サムスン日本研究所)

Temperature dependence of STT switching of hybrid memory layer using low Curie temperature CoPd/Pd

multilayer

W. Zhao, T. Kato, D. Oshima, Y. Sonobe*, S. Takahashi*, S. Iwata

(Nagoya Univ., *Samsung R&D Institute Japan)

1. はじめに

スピントランスファートルク(STT)磁化反転方式は磁気ランダムアクセスメモリ(MRAM)の書き込み 手段として利用されているが、10 Gbit 級の大容量のMRAMを実現するには、高い熱安定性∆と低い臨界電流 密度 J_{sw}の両立と、より高効率な磁化反転手法の開発が求められている。大容量 MRAMを実現する熱アシス ト STT 磁化反転のメモリ層として、異なるキュリー温度の磁性層を交換結合したハイブリッドメモリ層が提 案されている[1]。これまでに我々は、高キュリー温度(T_c)の Co/Pd 多層膜(ML)と低 T_cの CoPd/Pd ML の交換結合二層構造ハイブリッドメモリ層を作製し、CoPd/Pd ML の T_c以上である 170℃から冷却する過程

で CoPd/Pd ML の磁化方向が, 交換結合により高 T_c Co/Pd ML の磁化方向に支配されることを報告した[2]。今回我々は, (低 T_c CoPd/Pd ML)/(高 T_c Co/Pd ML)の交換結合した二層ハイブ リッド構造の STT 磁化反転について報告する。また, STT 磁 化反転の熱アシスト効果を検証するため, その温度依存性を 調べた。

2. 実験方法

熱酸化膜付 Si 基板上にマグネトロンスパッタ法により, Si sub. / Ta (10) / Cu₇₀Ta₃₀ (150) / Pt (5) / [Pt (1.0) / Co (0.6)]₆ ML / Cu (2.5) / [Co (0.4) / Pd (1.2)]_{3-N} ML / [Co₄₈Pd₅₂ (0.4) / Pd (1.2)]_N ML / Cu (5) / Ta (5) (N = 0–3, 層厚の単位は nm) という GMR 構 造を作製した。光露光, EB 露光により, GMR 膜を微細加工 し, 接合部の直径が 120 nm から 300 nm までの CPP-GMR 接合 を作製した。STT 磁化反転は CPP-GMR 接合に電流パルスを印 加した後の抵抗値を測定することで観測した。

3. 実験結果

Fig. 1 は[Co/Pd]₂ / [CoPd/Pd]₁層をメモリ層とする CPP-GMR 接合の STT 磁化反転の臨界電流密度のパルス幅依存性である。 接合直径は 180 nm であり, Fig. 1 には反平行状態(AP)から平行 状態(P)への電流密度(J_{AP-P}), P から AP への電流密度 (J_{P-AP}), およびその平均値(J_{av})を示している。臨界電流密度はパルス幅 τ の増大により減少している。 $\tau = 1$ ns のときの J_{av} の値を J_{c0} と し, J_{av} のパルス幅依存性の傾きから熱安定性指標 $\Delta = K_u V / k_B T$ を見積もった。Fig. 2 は積層回数の異なるハイブリッドメモリ 層 [Co/Pd]_{3-N}/[CoPd/Pd]_Nの臨界反転電流密度 J_{c0} の温度依存性

Fig. 1 Pulse width dependence of the STT switching current densities of the hybrid memory layer of [Co/Pd]₂ / [CoPd/Pd]₁ with a pillar diameter of 180 nm.

Fig. 2 Temperature dependence of $J_{c0(av)}$ for the STT switching of the 2 different hybrid memory layers

である。N=2のハイブリッドメモリ層ではN=0の高 T_c メモリ層と比べ,室温では同程度であった J_{c0} が,高温では半分程度の J_{c0} が得られた。熱安定性 Δ も J_{c0} と似た温度依存性を示している。なお、この結果はシミュレーションと定性的に一致し[2]、今回の結果はSTT磁化反転の熱アシスト効果によると考えられる。

4.参考文献

[1] Machida et al., IEEE Trans. Magn., 53, 2002205 (2017).

[2] W. Zhao et al., IEEE Trans. Magn., 54, 3450405 (2018).

Inducing out-of-plane precession of magnetization for microwave-assisted magnetic recording with an oscillating polarizer in a spin-torque oscillator

W. Zhou¹, H. Sepehri-Amin¹, T. Taniguchi², S. Tamaru², Y. Sakuraba¹, S. Kasai¹, H. Kubota² and K. Hono¹

¹National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan

²National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan

Microwave-assisted magnetic recording (MAMR) is one of the promising technologies for maintaining the continuous increase of the recording density of hard disk drives. One major challenge for MAMR is to generate high frequency (f), large amplitude ac magnetic field (h_{ac}) within a nanosized area, which is expected to be realized with a spin-torque oscillator (STO). Previous studies used a perpendicularly magnetized polarizer to apply spin-transfer torque (STT) to another magnetic layer (field generating layer; FGL), in order to induce the out-of-plane precession (OPP) mode oscillation for h_{ac} generation.¹⁾ However, this design usually leads to a thick structure that is difficult to be embedded in the narrow gap of the recording head. Recently, Zhu *et al.* proposed a novel design of STO, where only a soft magnetic thin layer is exploited as the polarizer.²⁾ The polarizer first has its magnetization reversed to the direction opposite to the magnetic field (H) within the gap due to STT (Fig. 1(b)), then spin-polarizes the current to induce the OPP mode oscillation of FGL (Fig. 1(c)).³⁾ In this study, we experimentally demonstrate the OPP mode oscillation using the aforementioned design.

A 7-nm-thick $Fe_{67}Co_{33}$ (FeCo) layer was used as the FGL while a 7-nm-thick $Ni_{80}Fe_{20}$ (NiFe) layer was used as the polarizer, which were separated by 5-nm-thick Ag spacer. For characterization of the microfabricated STO devices, the resistance and the power spectral density (PSD) of the device were measured with increasing bias DC voltage (*U*) under a constant *H*. The positive *U* was defined as the electrons flowing from the NiFe layer to the FeCo layer.

The experimental results shown here were measured from a device with a diameter of ~ 28 nm. The magnetoresistance (MR) ratio of the device is ~ 6.2%. Under *H* to align the magnetization of both the FeCo and NiFe layers to the perpendicular direction, as *U* increased, we observed signals of the resistance indicating the reversal of the NiFe layer, followed by the emergence of multiple microwave signals. Figure 2 shows the mapping of PSD under $\mu_0 H = 0.81$ T tilted 2° from the perpendicular direction. When U > 30 mV, both the NiFe and FeCo layers are in OPP mode oscillation at f_{NiFe} and f_{FeCo} , respectively. And the strong microwave signal marked f_{MR} is due to the MR effect with a unique relationship of $f_{\text{MR}} = f_{\text{NiFe}} - f_{\text{FeCo}}$, as indicated by Fig. 1(d).⁴ Such dynamics were well reproduced by micromagnetic simulation.

References

- 1) S. Bosu *et al.*, Appl. Phys. Lett., **108**, 072403 (2016).
- 2) J.-G. Zhu, Joint MMM-Intermag Conference (2016), AB11.
- 3) H. Sepehri-Amin et al., J. Magn. Magn. Mater., 476, 361 (2019).
- 4) W. Zhou et al., Appl. Phys. Lett., 114, 172403 (2019).

Fig. 1 (a) Schematic illustration of magnetization of both NiFe and FeCo aligned along *H*. (b) NiFe is reversed by STT. (c) Both NiFe and FeCo are in OPP mode oscillation. (d) If the xy-plane rotates with FeCo at f_{FeCo} around the z-axis, in this coordinate system (x', y', and z), FeCo stays still, while NiFe oscillates with *f* equal to $f_{NiFe} - f_{FeCo}$, which is also *f* of the change in resistance due to the MR effect (f_{MR}).

Fig. 2 Mapping of PSD under $\mu_0 H = 0.81$ T tilted 2° from the perpendicular direction.

垂直磁化型 MRAM における 電圧パルス時間幅の許容範囲が広い電圧書き込み方式

松本利映¹、 佐藤智幸^{1,2}、今村裕志¹

(1. 産総研、2. 千葉工大)

Voltage-driven switching with long tolerance of voltage-pulse duration in a perpendicular MRAM

R. Matsumoto¹, T. Sato^{1,2}, and H. Imamura¹

(1. AIST, 2. Chiba Inst. Tech.)

背景

電圧書き込み¹⁻⁵⁾ は磁気ランダムアクセスメモリー(MRAM)の低消費電力書き込みを可能にする方式として 注目を集めている.しかし、 1×10^{-3} 未満の低い書き込みエラー率(WER)が得られる電圧パルス時間幅(t_p)の許 容範囲(便宜上、これを t_p の許容範囲と呼ぶ)は数百ピコセカンド程度と狭い.^{4,5)} パルス電圧源ごとの t_p のば らつきや MRAM 素子間の磁化の歳差時間のばらつきを考慮すると、 t_p の許容範囲は広い方が好ましい.

結果

本研究⁶では、Fig. 1(a)に示す垂直磁化型 MRAM 素子において、tpの許容範囲が広い電 圧書き込み方式¹⁾を理論的に検討した.Fig.1 の計算では電圧パルスの印加前(後)に有効垂 直磁気異方性定数 Keff^(pre) = 70 kJ/m³ (と Keff^(post) = 40 kJ/m³)で自由層磁化(m)を緩和させた. Fig. 1(b)は温度0Kにおけるtoの間の磁化ダイナ ミクスのタイプを t_p の間の $K_{\text{eff}}^{(+V)}$ とギルバー ト・ダンピング定数(α)によって分類したもの である. ダンピングトルクを利用することに よって、マジェンタとシアンの曲線の間の領 域において、t_pの許容範囲が広い電圧書き込 み方式が可能である.温度 300 K における、 WER の t_pの依存性の一例を Fig. 1(c)に示す. 10⁻³を切る WER が 0.5 ns ≤ t_p ≤ 10 ns の広い範 囲で得られることがわかる。

謝辞

本研究の一部は革新的研究開発推進プログラム (ImPACT)と JSPS 科研費 JP16K17509 の助成を受 けたものです.

Fig. 1 (a) MRAM cell and definitions of (x, y, z) and θ . (b) Types of the magnetization dynamics. In each schematic illustration, red curve with triangle represents trajectory of magnetization (*m*) during t_p viewed from +*x* direction, and open and solid circles represent equilibrium directions of *m* at $K_{\text{eff}}^{(\text{pre})}$ and $K_{\text{eff}}^{(+V)}$. (c) t_p dependence of WER.

参考文献

1) Y. Shiota *et al.*, Nat. Mater., Vol. 11, p. 39 (2012). 2) S. Kanai *et al.*, Appl. Phys. Lett., Vol. 101, p. 122403 (2012). 3) C. Grezes *et al.*, Appl. Phys. Lett., Vol. 108, p. 012403 (2016). 4) Y. Shiota *et al.*, Appl. Phys. Express, Vol. 9, p. 013001 (2016). 5) T. Yamamoto *et al.*, J. Phys. D: Appl. Phys., Vol. 52, p. 164001 (2019). 6) R. Matsumoto *et al.*, Appl. Phys. Express, Vol. 12, p. 053003 (2019). 自由層飽和磁化は 1400 kA/m, 印加外部磁界(*H*_{ext})は 31.83 kA/m (= 400 Oe). Fig.1(c)においてはさらに *K*_{eff}^(+V) = 33 kJ/m³, $\alpha = 0.17$, 体積 140²π×2 nm³ を仮定した.

非局所スピン注入による垂直磁化ナノドットの磁化反転

首藤 浩文、永澤 鶴美、金尾 太郎、山田 健一郎、水島 公一 (東芝研究開発センター)

Magnetization switching of a perpendicular magnetic nanodot induced by nonlocal spin injection

H. Suto, T. Nagasawa, T. Kanao, K. Yamada, and K. Mizushima

(Corporate Research & Development Center, Toshiba Corp.)

はじめに

電荷電流を伴わないスピン流の生成方法である非局所スピン注入は、デバイス構造の自由度が増す、発熱 などの電荷電流に起因した問題を回避できる、といった利点を持ち、磁気メモリやスピントルク発振素子等 のスピントロニクスにおける磁化の制御方法として注目されている[1]。同様に電荷電流を伴わないスピン流 の生成手法であるスピン軌道トルク(SOT)[2]と比較すると、SOT では界面に平行な成分のスピンが注入可 能であるのに対し、非局所スピン注入では、スピン注入側の磁性体に垂直磁化膜を用いることで界面に垂直 な成分のスピンも注入可能である。この特性のため、非局所スピン注入ではスピン注入のみによる垂直磁化 膜の磁化反転が可能であり、応用上有利であると考えられる。本研究では、垂直磁化膜からの非局所スピン 注入による垂直磁化ナノドットの磁化反転を実験的に実証した。また、直接通電によってスピン注入した場 合の磁化反転と比較した。

素子構造・結果

Fig. 1a に素子構造の模式図を、Fig. 1b にその断面 TEM 像を示す。 直径 150 nm のコンタクトを持つ下部電極の上に垂直磁化膜/Cu ス ペーサ/垂直磁化膜の GMR 膜を成膜し、上部磁化膜を直径 80 nm のナノドットに加工し素子を作製した。下部電極 (BE)、Cu スペー サにつながっている中間電極 (ME)、上部電極 (TE) を通じて通電 が可能である。

Fig. 2a に、BE から TE に 1 ms のパルス電流を印可した後に測定 した BE-TE 間の抵抗のパルス電流依存性を示す。MR 効果のため磁 化の平行配置と反平行配置に対応した抵抗状態が得られ、スピン注 入による垂直磁化ナノドットが磁化反転したことがわかる。Fig. 2b

に、BEからMEに1msのパルス電流を印可 し、同様の測定を行った結果を示す。平行配置 と反平行配置に対応した抵抗状態が得られ非 局所スピン注入によって垂直磁化ナノドット の磁化反転が起きることが示された。磁化反転 に必要な電流量は直接通電の場合と同等であ った。

参考文献 [1] T. Yang, et al., Nature. Phys. 4, 851-854 (2008).

[2] I. M. Miron, et al., Nature Mater. 9, 230–233 (2010).

本研究の一部は科学技術振興機構(JST)の

Fig. 1. a 素子の模式図. b 素子の断面 TEM 像。

BE-TE間抵抗のパルス電流依存性。

反強磁性結合した強磁性多層膜細線上の磁区の電流駆動における

非磁性中間層膜厚依存性の評価

田中雅章,大政達郎,鈴木隆文,本田俊輔,本多周太*,粟野博之**,壬生攻 (名古屋工業大学,*関西大学,**豊田工業大学)

Study on current-induced domain-wall motions of antiferromagnetically

coupled layered magnetic wires with various nonmagnetic interlayer thickness

Masaaki Tanaka, Tatsuro Ohmasa, Takahumi Suzuki, Shunsuke Honda,

Syuta Honda*, Hiroyuki Awano**, Ko Mibu

(Nagoya Institute of Technology, *Kansai University, **Toyota Technological Institute)

垂直磁化を持つ強磁性(FM)層と重金属層の積層細線において, FM層にネール磁壁が形成されている場合, 磁壁の電流駆動現象は重金属層のスピンホール効果に起因するスピン流の影響を受ける.そのためネール磁 壁を安定化することでスピンホール効果による効率的な磁壁駆動が期待できる^{1,2)}.本研究では非磁性(NM) 中間層として Ru を用いた FM/NM/FM 反強磁性結合多層膜に重金属 Pt キャップ層を付けた細線内の磁区の電 流駆動現象を調べ,反強磁性結合によるネール磁壁の安定性の NM 層膜厚依存性を調べた.

上下の FM 層を Tb/Co 多層膜とする {Tb/Co}4/Ru/{Co/Tb}4/Pt 構造の反強磁性結合細線を電子線描画装置と スパッタ装置を用いたリフトオフ法で作製した. Fig. 1(a)挿入図のように細線に磁区を生成し、両側の磁壁を DW1, DW2 と定義した. 細線長手方向へ磁場を印加した状態でパルス電流印加前後の磁区の位置を極カー効 果顕微鏡で調べ,電流印加による磁壁の移動量から速度を見積もった.

Fig. 1(a)に膜厚 0.63 nm の Ru を中間層とする反強磁性結合細線の磁壁速度の面内磁場依存性を示す.磁壁の速度は面内磁場に依存して変化し、DW1 および DW2 は面内磁場 $H_{L1} \ge H_{L2}$ で速度がゼロになった.この $H_{L1} \ge H_{L2}$ からネール磁壁の安定性の指標になる有効磁場 $H_{L}=(H_{L2}-H_{L1})/2$ を求めた.膜厚を変えた試料に対して H_L の大きさを評価した結果を Fig. 1(b)に示す.Ru 層の膜厚に依存して H_L が系統的に変化して、反強磁性結合が最も強くなる 0.6 nm 付近で H_L が最大の値になることがわかった.このことからネール磁壁の安定性 は反強磁性結合と相関関係があり、強い反強磁性結合を持つ試料ではネール磁壁が安定することがわかる.発表では中間層として Rh を用いた反強磁性結合細線との比較を行う予定である.

参考文献

1) P. P. J. Haazen et al., Nature Matter. 12, 299 (2013). 2) S. -H. Yang et al., Nat. Nanotechnol. 10, 221 (2015).

Fig. 1. (a) In-plane magnetic field dependence of DW velocity of $\{Tb/Co\}_4/Ru/\{Co/Tb\}_4/Pt$ wires. (b) Dependence on the designed Ru thickness of the effective longitudinal magnetic field H_L in $\{Tb/Co\}_4/Ru/\{Co/Tb\}_4/Pt$ wires.

スピンアイス・リザーバーコンピューティング

鍬開雄規,野村光,鈴木義茂,中谷亮一 (阪大) Spin ice reservoir computing Y. Kuwabiraki, H. Nomura, Y. Suzuki, R. Nakatani (Osaka Univ.)

<u>はじめに</u>

近年,リカレントニューラルネットワーク (RNN) はディープラーニングへの応用もあり非常に注目され ているが,膨大な消費電力が問題視されている.そこで,我々はナノ磁性体の静磁気相互作用を利用して, RNN の一種であるリザーバーコンピューティング (RC) を実現する方法を研究・提案している.昨年度は垂 直磁化膜のナノ磁性ドットを格子上に配列した RC を提案した.今回は人工スピンアイスに注目した.スピ ンアイスはフラストレーションによって多様な磁化分布を取りうる.磁化の遷移先は直前の磁化の分布に従 って変化すると考えられるので,スピンアイスを利用したリザーバーは情報の短期記憶と非線型演算能力を 持つと予想できる.そこで,面内磁化膜のナノ磁性ドットをハニカム構造となるように配列したスピンアイ ス・リザーバーを提案し,シミュレーションによる磁化挙動の検証と性能評価の結果を報告する.

<u>手法</u>

本研究では Landau-Lifshitz-Gilbert 方程式にもとづいて Fig 1 に示した素子構造の磁化の挙動を計算した. 磁性ドットの寸法は 80 nm × 60 nm × 20 nm の楕円柱とし,飽和磁化は 800 kA/m とした.磁性ドットは形状 磁気異方性を有しドット間に磁気双極子静磁気相互作用が働くことを仮定した. RC における情報の入力は中 央の 6 個のドットの磁化を操作して行った.情報の入力後はリザーバーの状態を更新するために素子全体に Fig 1 の矢印に示した方向に順に 30 kA/m の磁界を印加した.出力はすべてのドットの磁化の重み付き和とし た.ただし,重みは線形回帰を用いてトレーニングした.

<u>結果</u>

シミュレーション結果の一つを Fig 2 に示した. ここでは error rate と は教師関数とリザーバーの出力の差の絶対値とした. RC が入力値を無 視して常に一定値を出力する場合, AND と OR タスクの error rate は 0.25 となり, XOR タスクの error rate は 0.5 となる. しかし,本素子の error rate は遅延 2 以下でそれらの値より小さくなった. したがって, 本素子は遅延 2 までのタスクを計算できたと考えられる. また,同じ 入力が続いても一部のドットの磁化は異なる状態に変化したのを確認 した. このヒステリシスの存在により, RC の短期記憶が実現されたと 考えられる. また,外部磁界の強度がリザーバーの性能に大きな影響を 与えることがわかった. 今後,本素子の性能を向上させるためには,素 子構造やリザーバーの入力・更新方法などを変更し,短期記憶能力を 向上させる必要がある.

<u>謝辞</u>

本研究は総務省による委託研究「次世代人工知能技術の研究開発 II 人間の脳の演算処理メカニズムに倣った脳型演算処理技術の研究 開発」のもと実施されました.

Fig 1. Schematic of a spin ice reservoir.

Fig 2. Error rate of binary tasks.

Co/Pt 界面への酸化層挿入によるスピン軌道トルクの巨大変調 _{長谷川顕登,小山知弘***},千葉大地*** (東大,* 阪大産研,** 阪大 CSRN)

Significant modulation of spin-orbit torque by inserting oxidation layer into Co/Pt interface K. Hasegawa, T. Koyama^{*,**}, and D. Chiba^{*,**} (The Univ. of Tokyo, *ISIR, Osaka Univ., **CSRN, Osaka Univ.)

はじめに

強磁性金属 / 重金属接合膜におけるスピン軌道トルク (SOT) 磁化反転は次世代の情報書き込み手法として磁気メモ リへの応用が期待されているが、本格的な実用化に向けてはトルク生成の高効率化が必要とされている。これまでに強 磁性金属層もしくは重金属層の酸化に伴う SOT の巨大変調が報告されており^{1,2)}、界面における酸化が重要と考えら れている。しかしながら、一方の層全体が酸化されていたために界面酸化による影響は不明瞭だった。そこで本研究で は強磁性金属 (Co)/ 重金属 (Pt) 界面に薄い酸化層 (CoO) を挿入することで界面酸化の効果を直接検証した³⁾。

実験手法

まず、Ta/Pd/Co 層を熱酸化 Si 基板上に RF スパッタリングを用いて製膜した。次に試料を大気暴露することで 最上層である Co 層の表面を酸化させ、CoO 層を形成した。最後にその上から Pt 層を製膜し、これを界面酸化 試料 (Ta/Pd/Co/CoO/Pt) とした。比較用に単位面積あたりの磁気モーメントが界面酸化試料と同程度の非酸化試料 (Ta/Pd/Co/Pt) も作製した。SOT 有効磁場は面直磁化容易試料における高調波ホール測定法によって求めた⁴⁾。

結果および考察

界面酸化試料および非酸化試料におけるダンピング(フ ィールド) ライク SOT 有効磁場 $H_{DL(FL)}$ の大きさを Fig. 1 に示す。横軸は Pt 層中の電流密度 J_{Pt} である。界面酸化試 料では金属 Co 層とスピン流源である Pt 層の電気的な結合 は絶縁体の CoO によって遮断されているにも拘らず、非酸 化試料に比べてが $H_{DL(FL)}$ が約4(10)倍に増大している。

SOT 増大の起源としては、電荷密度分布の変化に起因した Co/Pt 界面におけるラシュバ・エデルシュタイン効果の増大が考えられる。ラシュバ・エデルシュタイン効果は主にフィールドライクトルクに寄与するとされ、*H*_{FL}の方が*H*_{DL}よりも顕著に増大したという実験結果とも矛盾しない。

本研究により、SOT デバイスの開発における界面酸化の 有用性が示された。

謝辞

本研究は JSPS 科研費および Spin-RNJ による援助の元に 行われた。

参考文献

- 1) X. Qiu et al.: Nat. Nanotechnol., 10, 333 (2015).
- 2) K.-U. Demasius: Nat. Commun., 7, 10644 (2016).
- 3) K. Hasegawa et al.: Phys. Rev. B, 98, 020405(R) (2018).
- 4) M. Hayashi et al.: Phys. Rev. B, 89, 144425 (2014).

Fig. 1 (a) The damping- and (b) field-like effective fields as a function of current density in the Pt layer for the interface-oxidized (IO) and unoxidized (UO) samples.

SiN / GdFeCo / Ta 三層膜のスピン軌道トルクの Gd 組成依存性

川上圭祐, 門脇圭佑, 大島大輝, 加藤剛志, 岩田聡 (名古屋大) Gd content dependence of spin orbit torques of SiN / GdFeCo / Ta trilayers K. Kawakami, K. Kadowaki, T. Kato, D. Oshima, S. Iwata (Nagoya Univ.)

はじめに

Gbit を超える MRAM 開発およびその低消費電力化において,磁性薄膜の高効率な磁化反転手法の開発が 求められている.スピン軌道トルク(SOT)を利用した磁化反転は,スピントランスファートルク(STT)磁 化反転に比べて高速化,低消費電力化が可能性であり,また書き込みマージンの確保が容易であるなどの利 点がある¹⁾.本研究では,組成の異なる GdFeCo 膜に隣接 Ta 層から印加されるスピン軌道トルクの Gd 組成 依存性を調べたので報告する.GdFeCo は Gd と遷移金属の磁気モーメントが反平行に結合したフェリ磁性体 であるため,組成によって正味磁化と FeCo の磁気モーメントを平行,反平行とすることができる.

実験方法

超高真空マグネトロンスパッタ装置により, 熱酸化膜付き Si 基板上に Ta (20 nm) / Gd_x(Fe₉₀Co₁₀)_{100-x} (5 nm) / SiN (3 nm)を成膜した.素子の加工には,電子ビームリソグラフィと Ar⁺イオンエッチングを用い,幅 1~8 µm のホールクロス構造を作製した. GdFeCo 膜の SOT は周波数 310 Hz の交流電流 I_{AC} をホールクロスに流すことで現れる異常 Hall 効果 (AHE) 電圧の高調波成分より見積もった²⁾. 交流電流と平行および垂直方向に磁界 H_{ext} を加えることによって,ダンピングライクトルク τ_{DL} およびフィールドライクトルク τ_{FL} を磁界に換算したもの (それぞれ, H_{DL} , H_{FL})を得た.

実験結果

Fig.1はSiN / GdFeCo / Ta 三層膜の正味磁化 M_{net}, H_{DL}, $H_{\rm FL}$, $\tau_{\rm DL}$, $\tau_{\rm FL}$ の Gd 組成依存性を示している. ここで, τ_{DL} , τ_{FL} は高調波法により得られる H_{DL} , H_{FL} に M_{net} を 乗じることで見積もった. GdFeCoの補償組成は AHE の符号および M_{net}の Gd 組成から Gd 24.8 at.%付近と見 積もられる. Gd 組成が補償組成に近づくにつれ, |H_{DI}], |*H*_{FL}|は増加している.しかしながら,これに*M*_{net}を乗 じた|T_{DL}|, |T_{FL}|は Gd 組成 22 ≤ x ≤ 28 でおおむね一定値 となっている. これはスピン Hall 効果により Ta 層より 流入するスピン流の角運動量が Mnet に移行しているた めと考えられる.H_{FL}, τ_{FL}は補償組成で符号が反転し ている.このような傾向は H_{DL} , τ_{DL} には現れていない. τ_{DL} , τ_{FL} はそれぞれ, $m \times m \times s$, $m \times s$ に比例する. こ こで, m は磁気モーメント, s は流入するスピン流のス ピン方向である. τ_{FL}は **m** の一次に比例し,補償組成で 符号が反転することから、スピン流は FeCoのモーメン トにトルクを与えると考えられる.

<u>参考文献</u>

- 1) L. Liu *et al.*, Science, **336**, 555 (2012).
- 2) M. Hayashi et al., Phys. Rev. B 89, 114425 (2014).

Fig. 1 Gd composition dependence of (a) net magnetization M_{net} , (b) damping- and field-like fields, H_{DL} and H_{FL} , respectively, and (c) damping- and field-like torques, τ_{DL} and τ_{FL} , respectively, in SiN / Gd_x(Fe₉₀Co₁₀)_{100-x} / Ta trilayers.

NiAl バッファ上に成長した極薄 MnGa 垂直磁化膜の スピン軌道トルク磁化反転

下橋史明, グェンビエットバオ, 山ノ内路彦, 植村哲也 (北海道大学)

Spin-orbit-torque induced magnetization switching for an ultra-thin MnGa grown on NiAl buffer layer Fumiaki Shimohashi, Nguyen Viet Bao, Michihiko Yamanouchi, and Tetsuya Uemura (Hokkaido University)

1. はじめに

スピン軌道トルク(SOT)磁化反転は次世代スピントロニクスデバイスの重要な基盤技術として最近注目されている. MnGa は比較的強い垂直磁気異方性を有すること、飽和磁化が比較的小さいこと、スピン偏極率が比較的高いことなどの特徴を持つことから、SOT デバイスの有望な電極材料として期待されている. しかしながら、SOT 磁化反転に必要な、厚さ数 nm 以下の良質な極薄膜の作製は容易ではなく、これまで SOT 磁化反転の実証は、MgO 基板上の CoGa バッファ層上 [1]やGaAs 基板上 [2]に形成した MnGa に限られている. 今回我々は、NiAl バッファ層を用い、厚さ1 nm の極薄 MnGa に対し、良好な垂直磁化特性を確認するとともに、SOT 磁化反転を実証したので報告する.

2. 実験方法

MgO(001)単結晶基板上に,(基板側から)MgO buffer (10 nm)/NiAl buffer (3 nm)/MnGa (1 or 2 nm)/Ta (5 nm)/MgO cap (2 nm) からなる積層構造を成長した.NiAl (MnGa)は室温で 堆積後,540 (400)℃でアニールを施した.成膜した層構造 をホールバー形状に加工し,SOT 磁化反転特性を室温で測 定した.

3. 結果及び考察

Fig. 1 に, 成膜した素子の異常ホール効果測定結果を示す. 厚さ 1 nm のおいても明瞭な垂直異方性を示し, NiAl バッフ ァ層は良好な垂直磁化特性を有する MnGa 極薄膜の形成に 有効であることが分かった. Fig. 2 に厚さ 1 nm の MnGa に 対する SOT 磁化反転の結果を示す. 図の縦軸は規格化した 異常ホール信号, 横軸はホールバーに流したパルス電流 I_p の大きさである.また, Deterministic switching のため, 電 流方向に補助磁場を $\mu_0H_x = \pm 0.1$ T 印加した. $I_p \cong \pm 15$ mA で, 異常ホール抵抗の明瞭な変化が観測され,これは, Ta 中で 生成されたスピン流による MnGa の SOT 磁化反転を明瞭 に示す結果である.

参考文献

- 1) R. Ranjbar et al., Jpn. J. Appl. Phys. 55, 120302 (2016).
- 2) K. Meng et al., Sci. Rep. 6, 38375 (2016).

Fig. 1. Anomalous Hall resistance R_{yx} for NiAl/MnGa/Ta stack as a function of out-of-plane magnetic field.

Fig. 2. Normalized R_{yx} as a function of pulse current I_p with the duration of 1 s under $\mu_0 H_x = \pm 0.1$ T.

MgO/Co/Pt 積層膜における電界アシストスピン軌道トルク磁化反転

國島 和哉,周 興,大島 大輝,加藤 剛志,岩田 聡 (名古屋大学)

Electric-field-assisted spin orbit torque switching in MgO/Co/Pt trilayers K.Kunishima, X.Zhou, D.Oshima, T.Kato, S.Iwata (Nagoya University)

<u>はじめに</u>

次世代不揮発性メモリとして注目されている磁気ランダムアクセスメモリ(MRAM)には、書き込み時の消 費電力が大きいという欠点があり、新たな磁化反転の手法として、スピンホール効果を用いた磁化反転が検 討されている¹⁾。しかし、この手法でも純スピン流を生成するために、重金属膜に10⁶~10⁷ A/cm² 程度の大き な電流密度を必要とする。近年、磁性層に電界を印加することにより界面異方性を制御し、スピン軌道トル ク(Spin-Orbit-Torque, SOT)磁化反転の反転電流密度を制御することが報告されている²⁾。ここでは、垂直磁気 異方性を示す MgO/Co/Pt 積層膜において、電界による磁気特性の制御と電界アシストスピン軌道トルク磁化 反転について調べた。

<u>実験方法</u>

超高真空マグネトロンスパッタリング装置を用いて、MgO (10 nm) / Co (0.4 nm) / Pt (3 nm) / SiN (5 nm) / (熱酸化膜付き) Si 基板を成膜した。電子線露光装置と Ar⁺イオンエッチング装置を用い、異常ホール効果測定用の幅 3 µm、6µm の十字パターンに加工した。その後、電圧を印加して測定を行うため、フォトリソグラフィとスパッタリングにより絶縁層パターン HfO₂ (100 nm)と電極パターン Al (100 nm)を形成した (Fig. 1)。なお、HfO₂ 成膜時の Ar E P_{Ar HfO2} は 0.1 ~ 4 Pa とした。異常ホール効果は、膜面法線方向に 1 kOe の外部磁界を印加して測定した。SOT 磁化反転は、面内パルス電流 (パルス幅 10 µs ~ 1 ms)を印加後にホール抵抗を測定することで行った。このとき、電流方向に外部磁界を 200 Oe 印加した。これらの測定時に、Al 電極にゲート電圧 $V_{\rm G} = -20$ V ~ +20 V を印加し、電界印加効果を調べた。

<u>実験結果</u>

Fig. 2 はゲート電圧 $V_G = -20 \text{ V}$, +20 V を印加した場合の SOT 磁化反転の結果である。電流パルス幅は 0.1 ms であり、反転電流密度 J_c は $V_G = +20 \text{ V}$ のとき $3.95 \times 10^7 \text{ A/cm}^2$, $V_G = -20 \text{ V}$ のとき $3.66 \times 10^7 \text{ A/cm}^2$ と 20 %/(V/nm) 程度の J_c の変化が確認された。Fig. 3 は SOT 磁化反転における、 J_c の変化率の電流パルス幅 τ 依存性を示し ている。 $P_{Ar,HfO2}$ が 0.4 Pa のものと 1 Pa のものについて J_c の変化率を比較したところ $P_{Ar,HfO2} = 1$ Pa の方が大 きいことが確認された。また、 $P_{Ar,HfO2} = 0.4$ Pa, 1 Pa いずれも J_c の変化率は $\tau = 0.1$ ms で最大となった。 **参考文献**

1) L.Liu et al., Phys. Rev. Lett., **109**, 096602 (2012).

2) T. Inokuchi et al., Appl. Phys. Lett., 110, 252404 (2017).

Fig. 1 Optical microscope image of the microfabricated MgO / Co / Pt trilayers.

Fig.2 SOT switching of microfabricated MgO / Co / Pt measured under $V_{\rm G} = \pm 20$ V (Current pulse width 0.1 ms, $P_{\rm Ar,HfO2} = 1$ Pa).

Fig.3 Pulse width dependence of J_c variation rate of SOT switching of MgO / Co / Pt trilayers ($P_{Ar,HfO2} = 0.4$ and 1 Pa).

Domain wall propagation by spin-orbit torques in in-plane magnetized systems

Ryuhei Kohno¹, João Sampaio¹, Stanislas Rohart¹ and André Thiaville¹

¹Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France

E-mail: ryuhei.kohno@u-psud.fr

The effect of damping-like spin-orbit torque (DL SOT) on in-plane domain walls (DWs) in tracks was studied by micromagnetic simulations and analytically. We considered a magnetic thin film on a heavy metal layer and investigated the situation where spin polarized current from the heavy layer is injected to the magnetic layer (Fig. a). We find that DL SOT can drive vortex DWs (VDWs) more efficiently than spin-transfer torque (STT) in a comparable system, whereas transverse DWs (TDWs), the other typical DW structure in soft tracks, are not driven in the absence of Dzyaloshinskii-Moriya interaction (DMI). The trajectories of VDWs with different core polarities and windings have different propagation directions and dissipations toward the edge (Fig. b). Our analysis based on the Thiele equation shows that the driving force for the vortex DW is associated with a distortion from the perfect vortex configuration due to geometrical confinement. This distortion is higher, and the SOT DW driving is more efficient, in narrower, thinner tracks. Also it is revealed that the propagation direction depends on the core polarities, and the dissipation depends on the windings. In the presence of DMI, this distortion is also enhanced only in a certain direction, leading to faster movements with one core polarity and slower movements with the other. Interestingly DMI enhances the distortion of TDWs as well and it produces the driving force. In the end TDWs can propagate even faster than VDWs by SOT if the system has the DMI. We show also that it is possible to determine the relative amplitudes of STT and DL SOT by comparing the motion of different vortex DW structures in the same track.

- Fig. a: Schematic of SOT in a track of HM/CoFeB/MgO with in-plane DW structures. A charge current J_C flows mainly in the HM layer and induces a spin accumulation in the CoFeB layer
- Fig. b: Trajectories of VDW cores with (black) and without (brown) DMI ($J = 10 \text{ GA/m}^2$, t=5 nm, w=150 nm).

Co₂Fe(Ga,Ge)を用いた電流面直型スピンバルブ素子の 磁気抵抗特性に及ぼす Co₂Fe(Ga,Ge)薄膜の Ge 組成の影響

近惣祐輝¹,谷本哲盛¹,井上将希¹,犬伏和海²,中田勝之²,植村哲也¹ (¹北海道大学,²TDK 株式会社)

Influence of Ge composition in Co₂Fe(Ga,Ge) films on magnetoresistance characteristics of Co₂Fe(Ga,Ge)-based current-perpendicular-to-plane spin valves

Y. Chikaso¹, T. Tanimoto¹, M. Inoue¹, K. Inubushi², K. Nakada², and T. Uemura¹ (¹Hokkaido University, ²TDK Corporation)

1. はじめに

ハーフメタル材料の一種である Co 基ホイスラー合金は、そのスピン偏極率の高さから、電流面直型巨大磁 気抵抗(CPP-GMR)素子に用いた際に大きな磁気抵抗(MR)比が期待されるため、現在、盛んに研究が進められ ている¹⁻⁵⁾.最近、我々は Co₂MnSi(CMS)を用いた CPP-GMR 素子において、Mn 組成を化学量論組成よりも過 剰にすることで、CMS のハーフメタル特性を低下させる Co_{Mn} アンチサイトが抑制され、MR 比が向上するこ とを実証した⁴⁾.このことから、Co 基ホイスラー合金のハーフメタル特性の向上には、組成制御が有効であ ると考えられる.最近、Co₂Fe(Ga,Ge)(CFGG)を用いた CPP-GMR 素子において比較的高い MR 比が報告され たが⁵⁾、CFGG の組成制御に対する MR 特性への影響は明らかになっていない.本研究の目的は、CFGG を用 いた CPP-GMR 素子の MR 特性に対する組成制御の影響を明らかにすることである.

2. 実験方法

CFGG 電極と Ag spacer を有する保磁力差型 CPP-GMR 素子において, CFGG の Ge 組成を系統的に変化させた素子を作製した. 層構造は MgO(001)単結晶基板上に, MgO buffer (10 nm)/Co₅₀Fe₅₀ seed (10)/Ag buffer (100)/CFGG lower electrode (10)/Ag spacer (5)/CFGG upper electrode (8)/Ru cap (5)の順とした. 尚, MR 比の向上を図るため, Ag spacer と上下 CFGG 電極間に厚さ 0.21 nm の NiAl 極薄層を挿入した素子も作製した⁵⁾. CFGG 電極の組成制御は CFGG ターゲットと Ge ターゲットの同時スパッタ法により行い, Co₂Fe_{1.03}Ga_{0.41}Ge_aにおいて $\alpha = 0.24$ から 1.06 まで変化させた. CFGG 電極の結晶性向上のため,上部 CFGG 電極を室温にて堆積後, in-situ で 550℃のアニールを行った.上記の層構造に対して,微細加工を施し, CPP-GMR 素子を作製した.素子の MR 特性は,室温において直流 4 端子法により測定した. MR 比は($R_{AP}-R_{P}$)/ R_{P} により定義した.ここで, $R_{AP(P)}$ は磁化反平行(平行)時の素子抵抗である.

3. 結果および考察

Fig. 1 に作製した CPP-GMR 素子の室温における MR 比の Ge 組成 α に対する依存性を示す. α の増加に対し, MR 比はほぼ単調に上昇し, NiAl 極薄層を持つ素子において, $\alpha = 1.06$ にて最大 55.6%の MR 比が得 られた. これは, Ge rich 組成による Co アンチサイトの抑制等が原因と 考えられる. 以上の結果より, Ge-rich CFGG の CPP-GMR 素子における 有用性を実証した.

<u>参考文献</u>

1) Y. Sakuraba et al., Appl. Phys. Lett. 101, 252408 (2012).

- 2) H. Narisawa et al., Appl. Phys. Express 8, 063008 (2015).
- 3) Y. Du et al., Appl. Phys. Lett. 107, 112405 (2015).
- 4) M. Inoue et al., Appl. Phys. Lett. 111, 082403 (2017).
- 5) J. W. Jung et al., Appl. Phys. Lett. 108, 102408 (2016).

Fig. 1. MR ratio at 290 K for CFGG/NiAl/Ag/NiAl/CFGG CPP-GMR devices as a function of Ge composition α in Co₂Fe_{1.03}Ga_{0.41}Ge_{α} electrode with NiAl thickness of 0 and 0.21 nm.

Ag-In:Mn-Zn-O ナノコンポジットスペーサーを有する

CPP-GMR 素子の微細構造とスピン依存伝導

中谷 友也, 佐々木 泰祐, 桜庭 裕弥, 宝野 和博 (物質・材料研究機構)

Microstructure and spin-dependent electronic transport in CPP-GMR devices with Ag-In:Mn-Zn-O spacer Tomoya Nakatani, Taisuke Sasaki, Yuya Sakuraba, Kazuhiro Hono (National Institute for Materials Science)

はじめに

Cu:AlO_xなどのナノコンポジットをスペーサー層に用いることで,電流がnmサイズの金属パスに狭窄され, CPP-GMR 比が増大することが知られている¹⁾. 我々は昨年,ホイスラー合金 Co₂(Mn_{0.6}Fe_{0.4})Ge (CMFG)を強 磁性体層に用いた CPP-GMR 素子に, Ag-In-Zn-O (AIZO)をスペーサーとして用いることで 50%を超える高い MR 比が得られることを報告した²⁾. これは, CMFG 中の Mn と IZO 中の In₂O₃の間の酸化還元反応により, Mn-Zn-O マトリックス中に Ag-In 合金のパスが析出したナノコンポジットが形成され, Ag-In パス電流が狭窄 する効果によると考えられる. すなわち AIZO 層は Ag-In:Mn-Zn-O ナノコンポジットの前駆体として機能す る. しかしながら, Ag/IZO 2 層構造をスペーサーの前駆体に用いた場合に得られる MR 比は AIZO を用いた 場合に比べて小さい. 本研究では,これら 2 種類の系における MR 比の違いを決定するメカニズムを、微細 構造解析の結果を元に考察した.

実験方法

CPP-GMR 素子の積層構造は、Cu 電極/Ta(2)/Ru(2)/CoFe(0.5)/CoFeBTa(1.5)/CMFG(5)/CoFe(0.4)/スペーサー/ CoFe(0.4)/CMFG(5)/CoFeBTa(1.5)/Ru(8)(膜厚は nm)であり、スペーサーの前駆体として 1.2 nm 厚の AIZO (公称 Ag 濃度 29 at.%)と、Ag(0.4 nm)/IZO(1.3 nm)を用いた. 成膜後に 280 °C で 3 h の熱処理をおこなった. こ れらの CPP-GMR 膜の微細構造を、走査透過電子顕微鏡 (STEM)によって解析した.

実験結果

室温での RA と MR 比は, AIZO 前駆体に対しては 0.08 Ω ·µm², 50%, Ag/IZO 前駆体に対しては 0.1 Ω ·µm², 30%と, 同等の RA に対して大きな MR 比の違いがある. 図1に STEM による高分 解能 HAADF 像を示す. いずれの試料においてもスペーサーは, Mn-Zn-Oマトリックスに fcc 構造の Ag-In が分散したナノコンポ ジット構造であり, Ag-In 析出相は電流狭窄路 (CCP)として機能 すると考えられる. Ag-In CCP の大きさは, AIZO 前駆体の場合, 直径 5-10 nm 程度 (広範囲視野の低倍観察より測定), 厚さ約 1.8 nm であるのに対し, Ag/IZO 前駆体の場合直径約 3 nm, 厚さ約 2.4 nm と違いが見られる.

2 流体モデルに基づいた CCP-CPP-GMR の理論 ³によると, 強磁性体層と CCP のスピン抵抗の整合性の観点から, MR 比が最大になる CCP の直径が存在する. AIZO, Ag/IZO 前駆体のそれぞれについて, スピン抵抗を見積もったところ, AIZO 前駆体による Ag-In CCP の方が Ag/IZO 前駆体の場合よりも, CMFG 強磁性体層とのスピン抵抗の整合性がよいことが示唆された.

図 1 (a) AIZO および(b)Ag/IZO スペーサ 一前駆体を用いた CPP-GMR 膜の HAADF-STEM 像.

参考文献 1) Fukuzawa et al. IEEE Trans. Magn. 40, 2236 (2004).

2) 中谷ら, 第 42 回日本磁気学会学術講演会 13-aB-7. 3) Sato et al. IEEE. Trans. Magn. 44, 2608 (2008).

L10型磁性合金のスピン異常ホール効果に関する第一原理計算

三浦 良雄,名和 憲嗣,増田 啓介 (物質・材料研究機構)

A first-principles study on spin anomalous Hall effect of L10-type magnetic alloys

Yoshio Miura, Kenji Nawa, and Keisuke Masuda

(NIMS)

[背景]

近年、スピン軌道相互作用に起因するトルク(スピン軌道トルク:SOT)を用いた電流誘起の磁化反転がスピン メモリにおける有効な書き込み手段として盛んに研究されている[1]。SOT は磁気接合の強磁性層に隣接した 非磁性金属層にスピンホール効果(SHE)によってスピン流を生じさせ、強磁性層にスピン注入することにより 強磁性体の磁化にトルクを与える。SOT による磁化反転は、スピントランスファートルクによる磁化反転よ りも高速な磁化反転が期待できる一方で、強磁性層に注入されるスピン量子化軸の向き、及び強磁性層の磁 化に与えるトルクの向きが電流方向や強磁性層の磁気異方性などに依存するため、デバイス構造に制約を受 ける。そこで、強磁性金属におけるスピンホール効果(スピン異常ホール効果:SAHE)を利用した新しいス ピン軌道トルクを用いた磁化反転が理論的に提案されている[2,3]。この手法では、強磁性層に電流を流して その垂直方向に発生する SAHE によって、非磁性層を挟んだもう一方の強磁性層にスピン流を注入し、トル クを発生させて磁化反転を行う。SAHE を用いた磁化反転の利点は、注入するスピン流のスピン量子化軸の 向き、及び他方の強磁性層の磁化に与えるトルクの向きが SAHE を発現する強磁性層の磁化の向きによって 制御可能なことである。先行の理論研究[2]では、SAHE によって大きな SOT を得るためには、強磁性層のス ピン異常ホール伝導度(SAHC: σ_{xy}^{spin})と異常ホール伝導度(AHC: σ_{xy})の比 $ζ=\sigma_{xy}^{spin}/\sigma_{xy}$ を大きくすることが重要で あると指摘されている。そこで本研究では第一原理計算により内因性の SAHC と AHC を理論解析し大きな $ζ=\sigma_{xy}^{spin}/\sigma_{xy}}$ を得るための指針を明らかにする。

[結果]

内因性の SAHC および AHC は線形応答理論に基づいて 第一原理計算を行い、強磁性層として大きな磁気異方 性を有する L1₀型の FePt および FeAu 合金に着目した。 この計算では磁化は z 軸方向に固定し、通常の電流は x 方向、ホール電流は y 方向に流れるものとしている。 Fig. 1 にスピン分解したホール伝導度の計算結果を示す。 ここで、AHC は $\sigma_{xy}=\sigma_{xy}^{\uparrow\uparrow}+\sigma_{xy}^{\downarrow\downarrow}+\sigma_{xy}^{\uparrow\downarrow}+\sigma_{xy}^{\downarrow\uparrow}$ で、SAHC は σ_{xy} ^{spin}= $\sigma_{xy}^{\uparrow\uparrow}-\sigma_{xy}^{\downarrow\downarrow}$ で与えられる。Fig.1 より L10-FePt の AHC は σ_{xy} =761[S/cm], SAHC は σ_{xy} ^{spin}=498[S/cm] である ため、その比 $\zeta=\sigma_{xy}$ ^{spin}/ σ_{xy} は 1 より小さい。これは FePt の↓

スピン電子が Pt の大きなスピン軌道相互作用によりスピン反転散乱を受けて σ_{xy}^{\downarrow} が負に減少し、代わ りに $\sigma_{xy}^{\downarrow\uparrow}$ が正に増加したためと考えられる。一方 FeAu の SAHC は $\sigma_{xy}^{spin}=472$ [S/cm]でありこれは AHC $\sigma_{xy}=79$ [S/cm]より大きく、よってその比は $\zeta=5.9$ と 1 を大きく超える。これは FeAu の↑スピン電子の状態密度がフェルミ準位付近で小さいためスピン反転散乱が抑制され $\sigma_{xy}^{\downarrow\downarrow}$ が負に増加したためであると 考えられる。本研究は、文部科学省 科学研究費補助金 基盤研究(S) (JP16H06332)の助成を受けて行われた。

参考文献

- 1) Miron, et al., Nature 476, 189 (2011).
- 2) Taniguchi, et al., Phys. Rev. Appl. 3, 044001 (2015).
- 3) S. Iihama, et al., Nature electronics 1, 120-123 (2018).

L10-FePtにおけるスピン異常ホール効果

関剛斎^{1,2}、飯浜賢志³、谷口知大⁴、高梨弘毅^{1,2} (¹東北大金研、²東北大 CSRN、³東北大材料科学高等研、⁴産総研) Spin anomalous Hall effect in L1₀-FePt T. Seki^{1,2}, S. Iihama³, T. Taniguchi⁴ and K. Takanashi^{1, 2} (¹IMR, Tohoku Univ., ²CSRN, Tohoku Univ., ³WPI-AIMR, Tohoku Univ., ⁴AIST)

<u>はじめに</u>

スピン軌道相互作用は、スピントロニクスが新しい展開を見せるための重要なキーワードである。 例えば、スピン軌道相互作用を起源とするスピンホール効果(SHE)を用いれば、電流(J_c)と直交方向 にスピン角運動量の流れであるスピン流(J_s)を作り出すことができ、そのJ_sにより隣接する強磁性 体の磁化(M)にトルクを加えることも可能となる。SHE はこれまで非磁性体を中心に調べられてき たが、最近になって強磁性体における類似の電流-スピン流変換も報告されるようになってきた^{1,2}。

強磁性体では、MとJ。の外積方向に異常ホール効果(AHE)による電圧が生じる。強磁性体内では J。が既にスピン偏極電流であり、AHE により生じる横方向電流もスピン偏極すると考えられる。縦 伝導度に対する偏極率を β 、横伝導度に対する偏極率を ζ 、および異常ホール角を α_{AH} とした場合、 AHE により生じる横方向スピン流はJ_s \propto (ζ - β) α_{AH} [M/[M] × J_c]で与えられる。これがスピン異常ホ ール効果(SAHE)である³⁾。本研究では、大きな AHE を示す L1₀-FePt 合金が大きな SAHE を示す可 能性に着目し、L1₀-FePt のスピン異常ホール角および SAHE の対称性を調べ、さらに SAHE を用い た磁化反転を試みた。

実験結果

図1に模式的に示したL1₀-FePt | Cu | Ni₈₁Fe₁₉の巨大磁気抵抗(GMR)膜において、電流を膜面内に流したときのNi₈₁Fe₁₉層の磁化(m)に作用するトルクを評価することで、L1₀-FePt 層のSAHE による J_s を定量評価することができる。本研究では、スパッタ法を用いてSrTiO₃ (110)基板上にL1₀-FePt (30 nm) | Cu (3 nm) | Ni₈₁Fe₁₉ (20 nm)をエピタキシャル成長させた。ここで、L1₀-FePt 層は膜面内に一軸磁気異方性を有する面内磁化膜となっている。この薄膜試料に微細加工を施すことにより、FePt 層の磁化(p)と J_c が直交した素子(Orthogonal configuration-device)、およびpと J_c が平行の素子(Parallel configuration-device)の二種類の素子を作製した。これらの素子について直流電流(I_{dc})を印加しながら強磁性共鳴スペクトルを測定したところ、 I_{dc} に依存した共鳴線幅の変調が観測され、L1₀-FePt のスピン異常ホール角が 0.25 ± 0.03 と見積もられた。この値はこれまでにCoFeB で報告されている値⁴⁾よりも大きい。さらに、Orthogonal configuration-device と Parallel configuration-device の結果を比較することで、観測された電流-スピン流変換は SAHE の対称性で説明できることが確認された。講演時には SAHE を用いた磁化反転についても議論する。

<u>参考文献</u>

- 1) B. F. Miao et al., Phys. Rev. Lett. 111, 066602 (2013).
- 2) T. Seki et al., Appl. Phys. Lett. 107, 092401 (2015).
- 3) T. Taniguchi et al., Phys. Rev. Applied 3, 044001 (2015).
- 4) S. Iihama et al., Nature electronics 1, 120-123 (2018).

Fig. 1 Schematic illustration of current-in-plane giant magnetoresistance stack with $L1_0$ -FePt | Cu | $Ni_{81}Fe_{19}$ for the evaluation of spin anomalous Hall effect.

Cu-Ir スピンホール層を有する人工反強磁性構造の創製

¹ 增田啓人¹、関剛斎^{1,2}、窪田崇秀^{1,2}、高梨弘毅^{1,2} (¹ 東北大学金属材料研究所、² 東北大学 CSRN)

Fabrication of artificial antiferromagnetic structure with Cu-Ir spin Hall layer

H. Masuda¹, T. Seki^{1, 2}, T. Kubota^{1, 2}, and K. Takanashi^{1, 2}

(¹IMR, Tohoku Univ., ²CSRN, Tohoku Univ.)

<u>はじめに</u>

低い磁場感受率、漏れ磁場の抑制及び高い磁気共鳴周波数など多くの利点を有する反強磁性体がスピント ロニクス分野で注目を集めている¹⁾。反強磁性スピントロニクスの課題の1つが、反強磁性磁気構造を効率 的に制御する手法の確立である。低磁場感受率の反強磁性体に対して有効になると考えられているのが、ス ピンホール効果によって生じるスピン軌道トルク(SOT)の活用である。これまで、バルク反強磁性体とス ピン軌道相互作用の大きな Pt などの非磁性層を組み合わせた系において、SOT と反強磁性磁気構造の相互 作用が調べられてきた^{2,3)}。しかし、バルク反強磁性体では磁区や反強磁性結合強度を制御することが難し く、反強磁性体に作用するスピン軌道トルクの系統的な研究には不向きである。これに対して、反強磁性結 合した金属人工格子を用いれば非磁性層または強磁性層の膜厚を変えることによって反強磁性結合強度を制 御することが可能である。加えて、多数ある界面の効果によって大きなスピン軌道トルクが発現する可能性 があり、系統的なスピン軌道トルクの研究に適した研究対象であると言える。

したがって、本研究の最終目的は、強い反強磁性結合及び大きなスピン軌道トルクを両立できる金属人工 格子の探索である。この目的を達成するために、本研究では、Co/Cu-Ir/Co人工格子に着目した。Co/Cu /Co系は反強磁性結合を示す代表的な金属人工格子であり、加えてその大きな巨大磁気抵抗効果は電気的 な手法によって磁化方向を評価する際に有利となる。一方、Cuはスピンホール効果をほとんど示さない が、CuにIrを添加することによって $\theta_{SH}=2.1\pm0.6\%$ のスピンホール角を得られることが報告されている ⁴⁾。しかしながら、Co/Cu-Ir/Coにおける反強磁性結合についての報告はない。そこで、本研究ではCo/ Cu-Ir/Coが反強磁性結合とスピンホール効果を両立できる非磁性中間層材料であるかを調べた。

実験結果

薄膜試料として、マグネトロンスパッタリング装置を用いて Al₂O₃ (0001) 基板 / バッファー層(Cr (10 nm) / Au (5 nm) / Cu (35 nm) を熱処理によって合金化したもの) / Co (2 nm) / Cu、Ir、または Cu-Ir (*t* nm) / Co (2 nm) / Cu (2 nm) / Cr (5 nm)を作製した。ここで Cu-Ir の組成比は、Cu:Ir = 95 (at%): 5 (at%)) である。

振動試料型磁力計を用いて作製した試料の磁化曲線を測定し、反強磁性結合強度の中間層厚 t依存性を調べたところ、Co/Cu/Co及び Co/Cu-Ir/Coは $t \approx 0.75$ (nm)の試料、Co/Ir/Coは $t \approx 0.5$ (nm)の試料において反強磁性結合強度が最大となることが分かり、Cu-Ir中間層を用いて人工反強磁性構造を形成できることが明らかとなった。

次に、Cu-Ir の θ_{SH} を定量的に見積もるため、Al₂O₃ (0001) 基板 / Co (2 nm) / Cu-Ir (*t* nm) / Cr (5 nm) の 3 層構造におけるスピンホール磁気抵抗効果を調べた。その結果、スピンホール角 $\theta_{SH} \approx 4.3$ % という値が得 られ、本研究で用いた Cu-Ir 非磁性中間層が反強磁性結合とスピンホール効果を両立できる材料であること が確認された。

参考文献

- 1) T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Nat. Nano. 11, 231 (2016).
- 2) W. Zhou et al., Phys. Rev. Mater. 2, 094404 (2018).
- 3) T. Moriyama et al., Sci. Rep. 8, 14167 (2018).
- 4) Y. Niimi et al., Phys. Rev. Lett. 106, 126601 (2011).

-58-

β 相および α 相 W-Ta 合金/CoFeB 積層系のスピンホール磁気抵抗効果

斉藤好昭¹、手束展規^{2,4}、池田正二^{1,3,4,5}、佐藤英夫^{1,3,4,5}、遠藤哲郎¹⁻⁵ (東北大¹CIES、²工学研究科、³CSIS、⁴ CSRN、⁵RIEC) Spin Hall magnetoresistance in β- and α-phase W.Ta alloy/CoFeB stack systems Y. Saito¹, N. Tezuka^{2,4}, S. Ikeda^{1,3-5}, H. Sato^{1,3-5} and T. Endo¹⁻⁵ (Tohoku Univ. ¹CIES, ²Graduate School of Engineering, ³CSIS, ⁴ CSRN, ⁵RIEC)

<u>はじめに</u>

スピン軌道トルク(SOT)-MRAM, skyrmion, domain wall デバイスの実現を目指し、重金属/強磁性接合系の スピン軌道トルクの研究開発が盛んに行われている。特に、磁化反転の効率、つまり、ある電流(J_c)を流した ときのスピン流 (J_s)の生成効率であるスピンホール角($|\theta_{SH}| = |J_s/J_c|$)を増加させるため、多くの重金属材 料や重金属/強磁性界面の研究が行われ、 $|\theta_{SH}|$ が日に日に増加している。しかし、 $|\theta_{SH}|$ が大きな多くの重金属 材料は、比抵抗が大きいのが現状である。LSIなどの大規模回路中で大きな比抵抗材料を配線として用いる と、消費エネルギーの増大、スピードの遅延、大きな電圧降下をもたらし好ましくない。これらの課題を解 決するためには、比抵抗の増大に起因する $|\theta_{SH}|$ の増大に頼らず、本質的なスピンホール効果(intrinsic SHE)を 増大することが重要である。今回、第一原理計算¹⁾で intrinsic SHE の増大が予想されている β 相 $W_{100-x}Ta_x$ および α 相 $W_{100-x}Ta_x$ において、スピンホール角の Ta 組成依存性を調べたので報告する²⁾。

<u>実験方法</u>

超高真空スパッタを用いて、その成膜条件を変えることにより、様々な Ta 濃度(x)を有する β 相 $W_{100-x}Ta_x$ および α 相 $W_{100-x}Ta_x$ /CoFeB/MgO/Ta 積層薄膜を作製した。それらを微細加工しホールバー形状に加工し、ス ピンホール磁気抵抗効果(SMR)を測定した。測定は 305 K、-4Tesla~+4 Tesla で行った。得られた結果から、 拡散方程式を用いて $|\theta_{SH}|$ 、スピン拡散長を求め、それらの

Ta濃度依存性を調べた。

<u>実験結果</u>

Fig. 1 に様々な Ta 濃度を有する β 相 W_{100-x}Ta_x/CoFeB 系 の SMR ($\Delta R_{xx}/R_{xx}^{H=0}$)の結果を示した。図に示すように、 SMR の絶対値はある Ta 濃度で増大し最大値をとることが わかる。最大値をとる W_{100-x}Ta_x 膜厚も変化している。ま た、ここでは示さないが、Ta 濃度を増大すると α 相 W_{100-x}Ta_x/CoFeB 系の場合も同様の SMR の絶対値の増加が 観測された。

 β 相および α 相 W_{100-x}Ta_x/CoFeB 系の SMR の結果を、 拡散方程式を用いて解析した。Fig.2 に、解析結果である スピンホール角の絶対値($|\theta_{SH}|$)の Ta 濃度依存性を示す。 β 相、 α 相ともにある Ta 濃度で $|\theta_{SH}|$ は最大値を示すこと が明らかとなった。 β 相に関しては、Ta 濃度を増大する と W_{100-x}Ta_xの比抵抗の絶対値は単調減少するため、観測 された $|\theta_{SH}|$ の最大値は、第一原理計算で予想された intrinsic SHE の増大に起因していると考えられる。本研究 は JST-OPERA、科研費(15H05699, 19H00844)の支援のもと で行われた。

<u>参考文献</u>

- 1) X. Sui et al., Phys. Rev. B 96, 241105(R) (2017).
- 2) Y. Saito et al., Appl. Phys. Exp. 12, 053008 (2019).

Fig. 1 SMR plotted against the heavy metal (HM) layer thickness t_{W-Ta} for the devices with β -phase W-Ta HM.

Fig. 2 Estimated magnitude of the $|\theta_{SH}|$ as a function of Ta concentration x in the $W_{100-x}Ta_x$ alloy HMs.

CoFe₂O₄/Pt 界面における磁気近接効果の電圧制御

[○]野土翔登¹、山本匠¹、柳瀬隆²、島田敏宏²、長浜太郎² (北大院総化¹、北大院工²)

Voltage control of magnetic proximity effect at CoFe₂O₄/Pt interface ^OS. Nodo¹, T. Yamamoto¹, T. Yanase², T. Shimada², T. Nagahama² (Hokkaido Univ., Graduate school of Chemical Sciences and Engineering¹ Hokkaido Univ., Graduate school of Engineering²)

はじめに

近年、Pt/CoFe₂O₄のような非磁性重金属、強磁性絶縁体から成る界面(HM/FMI)における諸現象が広く研究 されている。特に磁気近接効果は、非磁性材料のスピン制御技術として注目されている。Pt は HM/FMI の HM として用いられることが多く、Stoner 条件に近い電子構造[1]のため磁気近接効果によって磁性が誘起さ れやすいと言われている。したがって、Pt への電圧の印加で Fermi 準位を変化させることで Pt に誘起され る磁性が変化することが期待される。そこで本研究では、イオン液体を用いた電圧の印加[2]によって、Pt の磁気近接効果を制御することを試みた。

実験方法

薄膜試料は反応性分子線エピタキシー(MBE)法によって作製した。 膜構成は MgO(001)基板/NiO(5 nm)/ CoFe₂O₄(50 nm)/Pt(0.5 -3.5 nm)である。 製膜後はフォトリソグラフィー、Ar イオンミリングによる微細加工 を施し、Hall バー構造の素子を作製した。またイオン液体[EMI]⁺[TFSI]⁻のゲルシート(TA210:EMI-TFSI=1:1) を素子に貼り付け、ゲート電極とした。

実験結果

CoFe₂O₄/Pt(2.5 nm)から成る素子にイオン液体を介したゲート電圧の印加によって Figure 1(a)に示すような 電気抵抗の変化が得られた。これはゲート電圧の印加によって Pt の Fermi 準位が変化したためだと考えら れる。Figure 1(b)にはゲート電圧による Hall 測定の変化を示す。Hall 抵抗率はヒステリシスな変化(異常 Hall 効果)を示し、これは磁気近接効果によって Pt に磁性が誘起されていることを反映している。また、ゲート 電圧によって異常 Hall 効果の大きさが変化する結果が得られた。これは電圧の印加によって、Pt の磁気近 接効果が変化したためだと考えられる。

参考文献

- [1] A. H. MacDonald et al., Phys. Rev. B 23, 6377 (1981).
- [2] S. Dushenko et al., Nat. Commun. 9, 3118 (2018).

準安定 bcc Cu 中間層を用いた CIP-GMR 素子における巨大磁気抵抗効果

K. B. Fathoni^{1,2}, 桜庭裕弥¹, 佐々木泰祐¹, 三浦良雄¹, 中谷友也¹, 宝野和博^{1,2} (物材機構¹, 筑波大学²)

Giant magnetoresistance effect in CIP-GMR device using meta-stable bcc Cu spacer

K. B. Fathoni, Y. Sakuraba, T. Sasaki, Y. Miura, T. Nakatani, K. Hono

(NIMS¹, Univ. of Tsukuba²)

[背景]

スピントロニクスの代表的現象である面内電流型巨大磁気抵抗(CIP-GMR)効果は、HDD のリードヘッドとし てその記録密度に飛躍的な向上をもたらし、現在でも位置や回転等検出用磁気センサーとして幅広く利用さ れている。昨今では、常温での脳磁気計測までも可能にする超高感度磁気センサーの研究開発が加速してい るが、TMR 素子よりも低周波ノイズが小さく[1]、素子構造の簡便さから電気・磁気的設計がしやすい CIP-GMR 素子には大きな利点がある。しかし一方で、CIP-GMR 素子の MR 比は、リードヘッドとして役割 を終えた頃よりほぼ更新が見られず、スピンバルブ構造では 18%程度に留まっており[2]、センサーとしての 検出感度の向上のためには、MR 比向上が強く求められる。CIP-GMR 素子の MR 比には、(1)電子の平均自由 行程・(2)界面格子整合・(3)界面電子バンド整合の三要素が重要であるため、(1)の要件から材料の選択肢は電 気抵抗率の低い材料に律速される。そこで本研究では、Fe 上に成長が報告される準安定 bcc Cu を中間層とし [3]、CoFe と組み合わせた CIP-GMR 素子に注目した。

[実験方法]

MgO(001)単結晶基板上に、Co_{1-x}Fe_x/Cu/Co_{1-x}Fe_x/IrMn 構造のス ピンバルブ(SV)型 CIP-GMR 素子を Co:Fe の組成比を変えて 作製し、その結晶構造や磁気抵抗効果の評価と TEM による 微細組織観察を行った。Cu 膜厚は傾斜膜として 0-5nm まで 変化させた。また TEM 観察による構造をベースとし、第一 原理計算によって Co_{1-x}Fe_x/Cu/Co_{1-x}Fe_x 界面透過率の面内波数 依存性の計算を行った。

[実験結果]

図1に示す MR 比の Co:Fe の組成比依存性から、x が 25,50,66at.%では最大 25%前後となる SV 型素子として過去最 高の MR 比を得た。TEM 観察の結果、bcc 構造の CoFe 上で は,準安定相として bcc Cu が成長しており、界面転位が全く ない理想的な格子整合状態が得られていることが分かった。 Fe/Cu/Fe においても同様の bcc Cu の成長と界面格子整合が確

図1 Co_{1-x}Fe_x/Cu/Co_{1-x}Fe_x/IrMn CIP-GMR 素子の 室温磁気抵抗比の Co:Fe 組成比依存性

認されたが、MR 比は 5%に留まった。第一原理計算によるスピン依存の電子の透過率計算の結果、Fe と bcc Cu では多数スピンバンドの整合性が悪いが、価電子数の多い Co₅₀Fe₅₀ では整合性が大きく改善し、特にブリ ルアンゾーン境界近傍の波数を持つ面内方向に伝搬する電子の整合性が高いことが、Fe と Co₅₀Fe₅₀ の MR 比 の大きな差の起源であることが分かった。bcc Cu と Co₅₀Fe₅₀ との極めて高い格子整合性と多数スピンバンド 整合により、IrMn を除き bcc Cu を介した層間反強磁性結合を利用したスペキュラー反射型素子では、3 層 CIP-GMR 構造で最高となる室温で 40.5%の MR 比が実現された。

<u>参考文献</u>

[1]K. B. Klaassen, et al, IEEE Trans. Magn. 42, 108-113 (2006) [2]R. Sbiaa and H. Morita, Appl. Phys. Lett. 84, 5139-5141 (2004). [3]B. Heinrich et al., Phys. Rev. Lett. 64, 673-676 (1990)

-61 -

強磁性体/半導体スピン素子の性能と界面磁性の相関

<u>山田道洋¹</u>,白土優²,塚原誠人¹,神部広翔¹,工藤康平¹,山田晋也^{3,1} 澤野憲太郎⁴,中谷亮一^{2,3},浜屋宏平^{3,1}

(¹阪大基礎工, ²阪大工, ³阪大基礎工 CSRN, ⁴都市大総研)

Correlation between spintronic properties and ferromagnetism of ferromagnet/semiconductor interfaces

M. Yamada¹, Y. Shiratsuchi², M. Tsukahara¹, H. Kambe¹, K. Kudo¹, S. Yamada^{3,1},

K. Sawano⁴, R. Nakatani², K. Hamaya^{3,1}

(¹Grad. Sch. Eng. Sci., Osaka Univ., ²Grad. Sch. Eng., Osaka Univ.,

³CSRN, Osaka Univ., ⁴Advanced Research Laboratories, Tokyo City Univ.)

我々はこれまで,強磁性ホイスラー合金 Co2FeAlo₅Sio₅(CFAS)と 半導体 Ge のヘテロ界面を有する横型スピンバルブ素子を用いて, 室温でもスピン信号取得することに成功している[1,2]が,その信号 強度は非常に小さいという課題があった.一方,この素子を 300℃ でアニール処理すると,ヘテロ界面の反応の影響で低温でのスピン 信号が約 90%減少することを観測し,スピン信号と界面品質の関係 は明らかになり始めている[3].本研究では,CFAS/Ge 界面に Fe 終 端層挿入することで界面近傍の品質を改善し,明瞭なスピン信号の 増大を観測したので報告する.また,磁気特性の観点からも界面品 質を評価し,スピン信号との相関を評価した.

Fig.1(a)に示すような Co₂FeAlo₅Sio₅(CFAS)/n-Ge 横型スピンバル ブ素子を作製し, Fe 終端後の室温スピン信号を測定した結果, 従来 の素子[1]と比べて信号強度が約 60 倍に増大することが判った [Fig.1(b)]. HAADF-STEM 観察より, 従来 CFAS/Ge 界面で見られ ていた組成のゆらぎ[3]は, Fe 終端を行うことで大幅に改善されて いることを確認した[4]. 一方, ヘテロ界面の磁性を評価するために, スピン注入電極構造の界面近傍の状態を模擬するための Ge(111)基 板上の CFAS(5 ML)/Fe(5 ML)薄膜と CFAS(10 ML)薄膜をそれぞれ作 製し, 室温で面内磁気光学 Kerr 効果測定を行った. その結果, Fe 5ML を挿入した薄膜では, Kerr 回転角が 10 倍程度になっており (Fig.2), 界面近傍の磁性が大きく改善されていることが示唆された.

講演では、スピン信号の温度依存性と Kerr 効果信号の温度依存 性の相関も併せて議論する.

本研究の一部は, JSPS 科研費(Grant No. 16H02333, 17H06832, 17H06120, 18J00502)の支援を受けた.

参考文献

- [1] M. Yamada et al., Appl. Phys. Exp. 10, 093001 (2017).
- [2] K. Hamaya et al., J. Phys. D: Appl. Phys. 51, 393001 (2018).
- [3] B. Kuerbanjiang et al., Phys. Rev. B 98, 115304 (2018).
- [4] M. Yamada et al., (in preparation).

Fig. 1. (a) Schematic of a lateral spin valve device with Co₂FeAl_{0.5}Si_{0.5}/Ge electrodes.
(b) Room temperature nonlocal spin signal for devices with CFAS/Ge and CFAS/Fe(5 ML)/Ge contacts.

Fig. 2. In-plane magneto-optical Kerr effect loops for CFAS/Ge and CFAS/Fe(5 ML)/Ge films at room temperature.

強磁性体/半導体スピン素子におけるスピン蓄積信号の

非線形バイアス依存性

藤田裕一1,山田道洋1,塚原誠人1,内藤貴大1,山田晋也2.1

澤野憲太郎³, <u>浜屋宏平^{2,1}</u>

(1阪大基礎工, 2阪大基礎工 CSRN, 3都市大総研)

Nonlinear bias dependence of spin accumulation signals in ferromagnet/semiconductor devices

Y. Fujita, M. Yamada¹, M. Tsukahara¹, T. Naito¹, S. Yamada^{2,1}, K. Sawano³, K. Hamaya^{2,1}

(¹Grad. Sch. Eng. Sci., ²CSRN, Osaka Univ., ³Advanced Research Laboratories, Tokyo City Univ.)

我々は、強磁性ホイスラー合金 Co₂FeAlo.sSio.s(CFAS)と半導体 Ge のヘテロ界面を有する横型スピンバル ブ素子を用いて、スピン信号を室温で取得することに成功している[1,2]が、その2端子磁気抵抗(MR)比は未 だ小さい[3]. 一方、半導体スピン素子における2端子 MR 信号に関するこれまでの研究では、バイアス電圧 印加によりスピンドリフト効果が増大することでスピン信号が増強されると報告されてきたが[4]、最近の詳 細な研究では、スピン検出電極側の非線形なスピン変換効率を考慮することが重要であるとの指摘もある[5]. 本研究では、半導体横型スピンバルブ素子において2端子 MR 信号のバイアス依存性を詳細に評価した結果、 バイアス電圧に対してスピン蓄積電圧(Δ/L)が非線形に変化する現象を観測したので報告する.

Fig.1(a)に示すような CFAS(FM)/n-Ge 横型スピンバルブ素子を作製し,2 つの FM 端子間に直流電流(1) を印加することでスピン信号を測定した. Fig.1(b)には,様々

な印加電流下でのスピン蓄積電圧(ΔV_L)信号を示す. 興味深 いことに、Iの極性が同符号の条件であっても、スピン信号の 符号が反転する現象が観測されている. ここで、電極間距離 の異なる別々の素子を Device A、Device B とし、 $\Delta V_L \ge I$ の 関係をまとめたのが Fig. 1(c)である. ΔV_L は Fert と Jaffrès の モデル[6]にあるような I に対する単調な変化を示すのではな く、sin カーブのような非線形な変化を示している. また、I> 0 (I < 0)の領域でも負(正)の ΔV_L が観測されている[7]. このこ とは、半導体スピン素子における 2 端子スピン信号が、印加 電流 I のみで記述できるものではなく、何らかの効果が重畳 されて非線形性を発現したことを示唆している.

講演では、同じ素子で測定される非局所4端子スピン信 号を詳細に考察することに加え、スピン検出電極側のスピン 検出電極側の非線形なスピン変換やスピンドリフトの影響な どを併せて議論し[7]、上記の現象を定性的に理解する.

本研究の一部は, JSPS 科研費(Grant No. 16H02333, 17H06832, 17H06120, 18J00502)の支援を受けた.

参考文献

[1] M. Yamada et al., Appl. Phys. Express 10, 093001 (2017).

- [2] K. Hamaya et al., J. Phys. D: Appl. Phys. 51, 393001 (2018).
- [3] M. Tsukahara et al., Appl. Phys. Express 12, 033002 (2019).
- [4] T. Sasaki et al., Appl. Phys. Lett. 98, 262503 (2011).
- [5] R. Jansen et al., Phys. Rev. Appl. 10, 064050 (2018).
- [6] A. Fert and H. Jaffrès, Phys. Rev B. 64, 184420 (2001).
- [7] Y. Fujita et al., (submitted).

Fig. 1. (a) Schematic illustration of a lateral ferromagnet/semiconductor device. (b) Local spin accumulation signals at 8 K at various *I* for devices A. (c) Bias *I* dependence of $\Delta V_{\rm L}$ at 8 K for devices A (open circles) and B (open squares).

表面弾性波の渦度を用いて生成したスピン流の定量解析

栗宗 勇貴 A, 松尾 衛 B,C, 前川 禎通 C,B, 能崎 幸雄 A,D

(慶大理工 A. 国科大カブリ研 B. 理研 C. 慶大スピン研 D)

Quantitative analysis of spin current generated using vorticity in surface acoustic waves

Yuki Kurimune^A, Mamoru Matsuo ^{B,C}, Sadamichi Maekawa ^{C,B}, Yukio Nozaki^{A,D}

(ADept. of Phys. Keio Univ., ^BKITS, UCAS, ^CRIKEN, ^DKeio Spintronics Center)

はじめに

磁性体やスピン軌道相互作用(SOI)の大きな貴金属を用いずにスピン流を生成することは、スピントロニク スデバイス研究における大きな挑戦である。2013 年に松尾らは、スピン角運動量と力学的回転による渦度の 結合(spin vorticity coupling, SVC)を用いて、表面弾性波(SAW)からスピン流を生成する手法を理論提案した[1]。 この理論では渦度の時間微分がスピン流源となり、スピン流強度がスピン緩和時間に比例するため、SOIの 弱い Cu や Al がスピン流生成に有利と考えられていた。これに対し、水銀の流体運動に含まれる定常的な渦 度も直流スピン流を生成することが実験検証され[2]、理論的にも2つの生成機構が存在することが示された [3]。このように流体運動によるスピン流は実験・理論の両面で生成機構に関する研究が進んでいる一方、SAW を用いたスピン流生成に関しては、NiFe/Cu 二層膜におけるスピン波共鳴の実験検証が報告されたのみであ り[4]、デバイス応用の観点からも SAW によるスピン流生成機構の解明が不可欠である。そこで SVC 効果の 微視的理論に基づき、非磁性体に生成されるスピン流の材料・周波数依存性を詳しく調べた。さらに、強磁 性体内の渦度による磁気弾性効果とバーネット効果についても調べ、二層膜に SAW を注入した際に生じるス ピン波共鳴を定量的に解析した。

実験方法

図1に示すようなSAWフィルター素子を作製し、SAWを生成、検出するすだれ状電極(IDT)の間にNiFe(20 nm)/Cu(200 nm), NiFe(20 nm)及び Ni(20 nm)を成膜した。Cu に SAW が注入されると、SVC 由来の交流スピン 流が強磁性層へ流れ、磁化にスピントランスファートルクを与えることでスピン波共鳴が励起される。この ときの透過マイクロ波の減衰を、ベクトルネットワークアナライザを用いて測定した。なお、IDT の櫛幅と 配列周期を変化させることにより、誘引される SAW の固有周波数を制御した。

実験結果

図 2 は各素子について測定したスピン波共鳴に伴うマイクロ波吸収強度の SAW 周波数依存性である。 NiFe/Cu 二層膜では吸収強度が周波数の7乗に比例する変化を示した一方で、NiFe 及び Ni 単層ではそれぞれ 周波数の3 乗と1 乗に比例する変化が見られた。前者は SAW の SVC によって Cu 内で生成されるスピン流 のトルクによって、後者はバーネット磁場と磁気弾性効果が磁性体の磁化に与える磁気トルクによって、予 想されるスピン波共鳴の強度の式で良くフィッティングされた。このスピン波共鳴強度の周波数依存性の違 いは、Cuにおいて SAW の SVC がスピン流を生成したことを示す実験的な証拠であり、SVC 効果の微視的 機構の理解に向けた重要な知見である。

図1 SAWによって生成されたスピン流による スピン波励起の測定系.

参考文献

[1] M. Matsuo et al., Phys. Rev. B87, 180402(R) (2013). [2] R. Takahashi et al., Nat. Phys. 12, 52 (2015). [3] M. Matsuo et al., Phys. Rev. B96, 020401(R) (2017). [4]D. Kobayashi et al., Phys. Rev. Lett 119, 077202 (2017)

図 2 NiFe/Cu 二層膜, 及び NiFe, Ni 単層でのマイク ロ波吸収強度の周波数依存性.

常磁性重金属界面におけるスピン吸収とスピン変換

伊藤大樹¹,木村崇^{1,2} (九大理¹,九大スピンセ²)

Spin absorption and spin conversion at paramagnetic heavy metal interfaces

D. Ito¹, T. Kimura^{1,2}

(¹ Dept. of Physics, Kyushu University, ² Research Center for Quantum Nano-Spin Sciences)

PtやBiなどの非磁性重金属体の界面では、高いスピン軌道相互作用に伴う高効率なスピン-電気変換が期待 されるため、精力的に研究されてきた。これまで、このような界面スピン軌道相互作用を有する物質系への スピン注入法として、専らスピンポンピング法が用いられているが、この手法では、強磁性近接効果や異常 Nernst 効果のような擬似的な信号が重畳するため、純粋なスピン-電気変換信号の解析を困難にしている。一 方で、横型スピンバルブ構造における非局所スピン注入法を用いれば、拡散スピン流のみを、非磁性重金属 界面に注入できるため、系の特性を決定付けるのに適した方法である。そこで、本研究では、非磁性重属界 面におけるスピン-電気変換信号の定量評価のための新規横型構造を開発した。

図1に本研究に使用されたデバイスのSEM像及び、測定機構について示す。このサンプルでは、Bi/Ag界面 に生じる inverse Rashba-Edelstein effect(IREE)にフォーカスした。IREEは、Rashba効果が存在する2次元会系 において、スピン流が電流へと変換される現象である。CoFeAl細線から非局所的に注入されたスピン流は Bi/Ag界面へと著しく吸収され、IREEによって電流へと変換され、Bi/Ag細線に沿った電圧として検出でき る。Bi/Ag中のスピン流は強いスピン吸収によって急速に減衰されるが、高いスピン分極を持つCoFeAlを注 入電極に適用することによって数+nmにわたり信号の検出を可能となる。

本発表では、Bi/Ag 界面以外の種々の常磁性重金属界面についての適用結果も示す。

図1 デバイスの SEM 像と IREE 検出の概念図。

<u>参考文献</u>

1) T. Kimura, Y. Otani, et al.: Phys. Rev. Lett. 98, 156601(2007)

2)J. C. Rojas Sánchez, L. Vila, G. Desfonds, et al.: Nature Communications vol.4, Article number: 2944 (2013)

Fe 薄膜のGa 置換による異常ネルンスト効果の増大機構

中山裕康¹, 増田啓介¹, 三浦飛鳥¹, 内田健一¹, 村田正行², 桜庭裕弥¹ (¹物材機構, ²産総研)

Mechanism of strong enhancement of anomalous Nernst effect in Fe by Ga substitution H. Nakayama¹, K. Masuda¹, A. Miura¹, K. Uchida¹, M. Murata², and Y. Sakuraba¹

(¹NIMS, ²AIST)

<u>はじめに</u>

熱電変換現象に基づいた熱電発電技術は基礎物理のみならず環境発電手法という応用の観点からも着目されている.特に近年,異常ネルンスト効果の応用が期待されており,応用上,異常ネルンスト効果の大きな材料の開拓が求められている.^{1),2)} これまでに FeGa 合金である Galfenol において比較的大きな異常ネルンスト効果が報告されているものの,そのメカニズムは明らかになっていない.³⁾異常ネルンスト効果の増大には異常ホール効果と横ペルチェ係数が重要な役割を果たすことから,⁴⁾本研究では,系統的な輸送測定と第一原理計算を併用することで,Fe 薄膜の Ga 置換による異常ネルンスト効果の増大機構について検討を行った.

<u>実験方法</u>

MgO(001) 基板上にコスパッタ法により膜厚 50 nm の Fe_{1-x}Ga_x (x = 0 - 0.44) 薄膜を作製した.作製した薄膜試料につ いて XRD, VSM, XRF により,構造および磁気特性を調べた. これらの薄膜試料について,フォトリソグラフィおよびアル ゴンイオンエッチングを用いてホールバー形状に加工した. 加工した試料を用いて異常ネルンスト効果,異常ホール効果 および電気抵抗の測定を行った.

<u>実験結果</u>

図 1(b) に異常ネルンスト効果の Ga 濃度 x 依存性測定結果 を示した. Fe を Ga に置換したことで, Fe から構造が変わっ ていないにも関わらず異常ネルンスト効果の大きさが劇的に 増大することが分かった. 同一の薄膜において異常ホール効 果およびゼーベック効果の測定を行うことで決定された横ペ ルチェ係数が図 1(c)に示した. 横ペルチェ係数の x 依存性は振 動的な振る舞いを示しているが, これは Fe の電子構造と Ga 置換による電子ドーピング効果を反映しているものと考えら れる. ⁵⁾ 横ペルチェ係数は x=0.1 および 0.3 近傍でピークを 持つが, Ga 濃度を増大させると電気抵抗率が単調に増大する ため, 異常ネルンスト効果の大きさは x = 0.3 近傍において最 大の値をとることが明らかとなった.

<u>参考文献</u>

- 1) M. Mizuguchi et al., Appl. Phys. Express 5, 093002 (2012).
- 2) Y. Sakuraba et al., Scr. Mater. 111, 29 (2016).
- 3) Y. Yang et al., AIP Advances 7, 095017 (2017).
- 4) Y. Sakuraba et al., arXiv: 1807.02209.
- 5) J. Weischenberg et al., Phys. Rev. B 87, 060406(R) (2013).

FIG. 1. (a) Schematic of experimental configuration for the anomalous Nernst effect (ANE). (b) The Ga composition *x* dependence of the magnitude of the ANE S_{ANE} in Fe_{1-x}Ga_x thin films. The inset shows M_s dependence of the S_{ANE} . (c) *x* dependence of the transverse Peltier coefficient α_{xy} in Fe_{1-x}Ga_x thin films.

レーザー加熱による異常ネルンスト効果の時間分解測定

水口将輝^{1,2,3}、齊藤真博^{1,4}、飯浜賢志⁵、Himanshu Sharma^{1,2}、小嗣真人⁴、水上成美^{3,5,6} (¹東北大金研、²JST-CREST、³東北大 CSRN、⁴東京理科大、³東北大 WPI-AIMR、⁶東北大 CSIS) Time-dependent measurements of the anomalous Nernst effect using a laser heating M. Mizuguchi^{1,2,3}, M. Saito^{1,4}, S. Iihama⁵, H. Sharma^{1,2}, M. Kotsugi⁵, S. Mizukami^{3,5,6} (¹IMR, Tohoku Univ., ²JST-CREST, ³CSRN, Tohoku Univ., ⁴Tokyo Univ. Sci., ⁵WPI-AIMR, Tohoku Univ., ⁶CSIS (CRC), Tohoku Univ.)

はじめに

熱磁気効果の一つである異常ネルンスト効果は、熱電変換素子などのエネルギーハーベスティング技術への応用が期待されている¹⁾。我々は、これまでに主に薄膜について、異常ネルンスト効果の系統的な測定を行ってきた。その結果、L10型規則合金 FePt が比較的大きな異常ネルンスト効果を示すことを見出し²⁾、異常ネルンスト効果を用いた熱電素子への応用の可能性について報告した³⁾。また、様々な規則合金における異常ネルンスト効果と磁気異方性の相関⁴⁾や、ハーフホイスラー合金における異常ネルンスト効果の低温特異性⁵⁾についても報告した。実際に、異常ネルンスト効果の応用を見据えた場合、熱流に対する高速時間応答が重要な知見となる。そこで、本研究では、熱スピン流から異常ネルンスト電圧への変換過程についてさらに考察を深めるため、パルスレーザーを用いて試料を加熱し、異常ネルンスト効果の時間分解測定を行った。

実験方法

超高真空マグネトロンスパッタリングにより、L10型規則合金 FePt 薄膜を作製した。膜厚が1-500 nm の 範囲で複数の膜厚の試料を作製した。振動試料型磁力計を用いて作製した薄膜の磁気特性の評価を行った。 異常ネルンスト効果の測定時には、波長800 nm の Ti: Sapphire レーザーを光源とするパルス幅 120 fs のレーザ ーパルスを繰り返し周波数1kHz で試料に照射した。光源から発振されたレーザー光は、ポンプ光とプロー ブ光に分割され、それぞれ光学パスを通過して試料に照射した。レーザー光は、光チョッパーを介して 800 Hz に変調した。薄膜面内方向に 15 kOe の磁場を印加した。磁場方向と直交する方向に端子を取り付け、ストレ ージオシロスコープで電圧をモニタした。

実験結果

いずれの試料についても、パルスレーザーの照射後に、電圧が急激に増加する振る舞いが見られた。レー ザー強度を増加すると、観測される電圧が比例して大きくなった。また、印加する磁場の角度を変化すると、 電圧も系統的に変化した。これらの結果から、レーザーパルスにより FePt 薄膜面直方向に熱勾配が生じ、こ れによる異常ネルンスト効果から電圧が生じていると考えられる。膜厚を変えた試料で測定を行ったところ、 ネルンスト電圧の膜厚依存性が大きいことが分かった。これは、薄膜内に生じる熱勾配の分布が、膜厚に強 く依存しているためと考えられる。当日は、磁気異方性との相関や、有限要素法による熱勾配の分布の計算 結果と実験結果の比較などについても議論する。

本研究の一部は、科学研究費補助金・基盤研究(A) (17H01052) および JST-CREST 研究 (JPMJCR1524) の支援を受けた。

参考文献

1) M. Mizuguchi and S. Nakatsuji, Sci. Tech. Adv. Mater. (review), 20, 262 (2019).

- 2) M. Mizuguchi et al., Appl. Phys. Express, 5, 093002 (2012).
- 3) Y. Sakuraba, M. Mizuguchi et al., Appl. Phys. Express, 6, 033003 (2013).
- 4) K. Hasegawa, M. Mizuguchi et al., Appl. Phys. Lett., 106, 25245 (2015).
- 5) H. Sharma, M. Mizuguchi, et al., Jpn. J. Appl. Phys., 58, SBBI03 (2019).

非磁性重金属における熱流ースピン流変換の実験的観測

松田亮^A, 須小遼河^A, 伊藤大樹^A, 有木大晟^A, 木村崇^{A,B} (九大理^A, 九大スピンセ^B)

Experimental observation of a conversion of spin and heat currents in nonmagnetic heavy metals R. Matsuda^A, R. Suko^A, D. Ito^A, T. Ariki^A, T. Kimura^{A,B} (Dept. of Phys. kyushu Univ.^A, Research Center for Quantum Nano-Spin Science, Kyushu Univ.^B)

背景

近年、スピントロニクス分野の発展に伴い、スピン流と熱の相互作用に起因する諸現象を扱うスピンカロ リトロニクスという分野が新たな発展を見せている。電子の電荷とスピンの相互作用によって生じるスピン ホール効果と、電子の熱とスピンの相互作用によって生じるスピンネルンスト効果では、発現の仕方が物質 によって異なることが報告された¹。物質の構造のさらなる理解のために両分野の研究がより重要になること が示唆され、注目を集めている。

一方で、熱電現象は古くから知られており、様々な研究成果が報告されている。それらの熱電現象の中に は、熱流と磁化の相互作用に起因する磁気熱電効果をはじめ、熱と電子スピンのホール効果 ¹ や熱流自身の

ホール効果なども存在し、各現象は極めて類似の磁場依存性や電流依存性を引き起こすため、実験的に観測された信号の真の起源を見分けることは容易ではない。さらに、強磁性/常磁性遷移金属の界面は、強磁性近接効果などの効果が競合し²、現象をますます複雑にしている。

今回は、非磁性重金属細線と強磁性細線を架橋した構造における 熱流とスピン流の変換について、常磁性重金属細線の膜厚依存や物 質依存(Pt,Ta,Nb)の観点から実験結果を比較し議論する。

実験方法

電子線リソグラフィーによる微細加工のパターニング、および金 属成膜において、SiO₂(1 µ m)/Siの基板の上に測定素子を作成した。 金属成膜にはマグネトロンスパッタリング法と電子ビームおよび抵抗 加熱蒸着法を用いた。

測定は、外部磁場を試料面内方向に印加し、第一高調波電圧の磁場 依存性をロックイン検波することで、電気的に生成されたスピン流の 特性を、また、第二高調波も同様にロックイン検波することで、熱的 に生成されたスピン流の特性を評価した。

試作した素子の電子顕微鏡像を図1、および図2に示す。各素子に おいて、第一高調波を用いてスピンホール効果を測定することで、ス

図1:熱流からスピン流への変換の測定素子

図2:スピン流からスピン流への変換の測 定素子

ピン流の伝搬特性を評価した。次に、熱によるスピン流生成に関して、図1の素子では、スピンネルンスト 効果によって生成されるスピン流を強磁性電圧端子を用いて検出し、図2の素子では、スピン吸収効果によ って生じる逆スピンネルンスト効果による温度変化を、ゼーベック効果を用いて検出した。

参考文献

1 Sheng, P. et al. Science Advances 3, 7, doi:10.1126/sciadv.1701503 (2017).

2 Suzuki, M. et al. Physical Review B 72, 8, doi:10.1103/PhysRevB.72.054430 (2005).

横型スピンバルブを用いたスピン依存ペルチェ効果の観測

須小遼河、松田亮、伊藤大樹、有木大晟、大西紘平*、木村崇* (九大理、*九大スピンセ)

Observation of the spin-dependent Peltier effect in lateral spin valve R.Suko,R.Matsuda,D.Ito,T.Ariki,K.Ohnishi^{*},T.Kimura^{*} (Kyushu Univ., ^{*}Spin Research Center of Kyushu Univ.)

<u>はじめに</u>

異なる金属の接合面に電流を流すことでその界面に放熱又は吸熱現象が発生するペルチェ効果は広く知られているが、近年この効果が電流だけでなくスピン流を流すことでも生じることが知られている。我々は、特にスピン依存型のペルチェ効果について、興味を持っている。既に、熱スピン注入の実験において、強磁性体 CoFeAl(CFA) が非常に大きなスピン依存ゼーベック係数を持つことを報告しており、オンサーガーの相反定理から、CFA は高いスピン依存ペルチェ係数を持つと考えられる。今回はこの CFA を用いて、より効果的なスピン依存ペルチェ係数の観測を期待するべく実験を行ったので報告する。

<u>実験方法</u>

今回の実験では Cu と CFA の二つの金属細線からなる横型スピンバルブ構造を電子線リソグラフィ により Si/SiO₂ 基板上に作成し、測定を行った。Fig.1 試作した素子の電子顕微鏡写真とスピン依存ペル チェ効果測定時の端子配置を示す。電気的非局所スピン注入とスピン吸収効果により、Cu1-CFA2 界面に 純スピン流を注入し、その際に生じた発熱(吸熱)効果を、熱電対として付加した Cu2 および CFA2 電極 のゼーベック電圧により評価した。測定には交流電源を用い、外部磁場を付加した上で、ロックインア ンプによって信号検出をおこなった。

また測定温度を室温から 2.4K まで変化させ、測定 温度と得られた信号の相関にも着目した。

<u>実験結果</u>

Fig.2 は、Fig1 の端子配置において測定温度 20K で観 測された電圧の磁場依存性である。得られた曲線は、 横型スピンバルブにおけるスピン流検出の際に観測され るスピン信号に類似している。この結果から、CFA2 内部の磁化方向と電子スピン流の持つスピン方向の関係 が CFA2-Cu2 検出端子の温度変化に関係していること がわかり、これはスピン依存ペルチェ効果によって発生 した熱流が検出端子の温度変化を誘発していることを強く 示唆している。得られた信号と CFA-Cu の相対ゼーベ ック係数のデータから検出端子の温度変化は 0.5mK 程度であることが分かった。

加えて発表では他の強磁性金属でのスピン依存ペルチェ 信号とその温度依存性について報告する。

Fig.1 the lateral spin valve structure v(uv)

Fig.2 spin-dependent Peltier signal on 20K

参考文献

J. Flipse, F. L. Bakker, A. Slachter, nature nanotechnology, Vol.7, p.166-168 (2012) A. Slachter, F. L. Bakker, B. J. van Wees, Phys. Rev. 84, 174408 (2011)

25aD - 1

GdFe 系合金薄膜を用いたホール素子作製への検討

森 敦司¹, 笠谷 雄一^{2,3}, 塚本 新²

(1日本大学大学院理工学研究科,2日本大学理工学部,3日本学術振興会特別研究員-PD)

Examination of Hall element fabrication using GdFe alloy thin film

Atsushi Mori¹, Yuichi Kasatani², 3, Arata Tsukamoto²

(1 Graduate School of Science and Technology, Nihon Univ., 2 College of Science and Technology, Nihon Univ., 3JSPS Research Fellow)

はじめに 現在センサとして活用されている大部分のホール素子には半導体のホール効果が用いられてい る. 金属磁性体において異常ホール効果が確認されているが、その大きさは半導体ホール効果に比べ極めて 小さいと考えられてきた. 一方,我々は希土類遷移金属フェリ磁性体である GdFe 合金薄膜において,単体 Fe 薄膜の約 70 倍の異常ホール効果が発現し得ることを報告している¹⁾.また,磁性合金薄膜を用いた場合, 製膜と配線のみで素子作製が可能であると考えられ、従来の半導体の作製プロセス数の約1/3の工程に減ら せる可能性があり、従来のホール素子が用いられている、マグネットスイッチや近接スイッチなどの S/N 比 向上,および,素子の簡略化が期待される.そこで、本研究では希土類遷移金属合金薄膜の磁気センサ利用の 提案とともに広範囲の分野での普及を目指し、ホール素子の柔軟性・性能向上に向けた検討を行う.

実験方法 試料は、厚さ 0.5 mm の Si 基板上及び、厚さ 0.1 mm の Resin 基板(旭硝子カーボグラスフィルム) 上に SiN (5 nm) / Gd₂₀Fe₇₀Co₁₀ (200 nm) / SiN (5 nm), Si 基板上に SiN (5 nm) / Gd₂₀Fe₈₀ (20 nm) / SiN (5 nm)をマ グネトロンスパッタリング法により作製した.室温において膜面垂直方向に外部磁場を印加し、膜面面内方 向に 0.1 mA の電流を印加した際の電流に対し面内垂直方向に生じる電圧を測定した.

実験結果 Fig. 1(a)に Si 基板上, Fig. 1(b) に Resin 基板上に SiN (5 nm) / Gd₂₀Fe₇₀Co₁₀ (200 nm) / SiN (5 nm)を製膜した試料 におけるホール電圧の外部磁場依存性を示す.残留ホール電 圧, 飽和磁界値等, Resin 基板上に製膜した試料においても Si 基板上製膜試料とほぼ同等の特性が得られる事を示した.

Fig. 2 1/2 SiN (5 nm) / Gd₂₀Fe₈₀ (20 nm) / SiN (5 nm) / Si sub. 1/2 おけるホール電圧の外部磁場依存性を示す. 膜厚を 1/10 とす ることでスイッチング領域におけるホール電圧値は約10倍 の 0.53 mV が得られ、線形応答領域における外部磁場に対す る電圧比は約3.1 mV/Tとなった.外部磁場に対する電圧比は、 InSb 半導体ホール素子(旭化成電子 HW-101A)と比較し1/10 程度であるがホール素子として用いるには十分な信号値の水 準であると考えられる. また, 外部磁場が印加されていない 場合に発生するホール電圧が 0.0003 mV と InSb 半導体ホー ル素子の不平衡電圧に比べ約105である.これは、より微小 な磁場範囲においてノイズレスにホール電圧が発現すること を示唆している. さらに、消費電力は、1.2×10⁻⁶ W と InSb 半導 体ホール素子の 1/4 となった. 以上のことより希土類遷移金 属フェリ磁性体である GdFe 合金薄膜を用いることにより、 低消費電力で微小な磁場を検出するのに十分なホール電圧を 発現するホール素子を作製することが可能であると考える.

謝辞 Resin 基板を提供いただいた日本大学理工学部芦沢好人准教授 に感謝する.

参考文献 1) Hirosige. Hachisuka et al., Journal of the Magnetics Society of Japan, 14aC-1 (2018).

voltage. (a) on Si sub. (b) on Resin sub.

Fig. 2 Magnetic field dependence of hall voltage of Gd₃₀Fe₇₀ (20 nm)

Controlling nonlinearity for magnetic tunnel junction based sensors by second order magnetic anisotropy of CoFeB

Takahiro Ogasawara¹, Mikihiko Oogane^{1,2,3}, Masakiyo Tsunoda^{3,4}, and Yasuo Ando^{1,2,3}

¹Department of Applied Physics, Tohoku University, Sendai 980-8579, Japan

²Center for Science and Innovation in Spintronics (Core Research Cluster) Organization for Advanced Studies,

Tohoku University, Sendai 980-8577, Japan

³Center for Spintronics Research Network, Tohoku University, Sendai 980-8577, Japan

⁴Department of Electronic Engineering, Tohoku University, Sendai 980-8579, Japan

An achievement of high tunnel magnetoresistance (TMR) ratio [1] has enabled to develop highly sensitive magnetic sensors using magnetic tunnel junctions (MTJs) [2]. On their electric vehicle applications for current monitoring, the linear output, *i.e.* low nonlinearity should be achieved for safe operations. However, previously, sensitivity and nonlinearity were reported to be in the trade-off relationship as a function of effective anisotropy field, H_k^{eff} , and it thus results in a lack of either of them by controlling H_k^{eff} [3]. Therefore, in order to break this restricted relationship, we focused on second order anisotropy field, H_{k2} and established a new approach for decreasing nonlinearity while achieving a high sensitivity simultaneously.

The MTJs with Ta/Ru/Pt/[Co/Pt]/Ru/[Co/Pt]/CoFeB(1)/MgO(2)/CoFeB(1.5-2.0)/Ta/Ru (thickness in nm) were deposited on SiO₂ substrate by dc/rf sputtering at room temperature. After pattering them into the circular junctions and post annealing at 300°C, TMR curves were measured by four-probe-method at 50 - 400 K using probe station and PPMS. For the magnetic characterization of the free CoFeB layer, Ta/MgO/CoFeB/Ta films were prepared separately by the same method. The effective and second anisotropy field, H_k^{eff} , H_{k2} and saturation magnetization, M_s were measured by angular-dependent FMR and SQUID, respectively.

Fig. 1 shows conductance ratio curve for the MTJ with 1.5-nm-thick CoFeB. The jump of the curve at ± 4 kOe corresponds to the large antiferromagnetic coupling field of [Co/Pt] via Ru. The linear output within ± 2 kOe is due to the rotation of in-plane magnetized free layer CoFeB, where its H_k^{eff} and H_{k2} were measured to be -1.7 kOe and 0.4 kOe, respectively by FMR. The nonlinearity was evaluated by the equation of $(G_{\text{exp}}-G_{\text{fit}})/(G_{\text{exp}}^{\text{max}}-G_{\text{exp}}^{\text{min}}) \times 100$ (%), which quantifies the normalized differences between experimental and linear-fitted conductance, G_{exp} and G_{fit} . As shown in Fig. 2 summarizing the maximum nonlinearity against H_{k2}/H_k^{eff} , the experimental results coincide very well with the calculations using simultaneous rotation and Slonczewski's TMR model. Therefore, we succeeded in establishing the new approach to describe the nonlinearity quantitatively with second order magnetic anisotropy, which is greatly useful for diminishing nonlinearity of MTJ sensors.

Fig. 1 Out-of-plane conductance ratio curve for MTJ with 1.5nm-thick-CoFeB free layer

Fig. 2 Maximum nonlinearity dependence on H_{k2}/H_k^{eff}

Reference

S. Yuasa, et al, Nat. Mater. 3, 868 (2004).
 K. Fujiwara, M. Oogane, Y. Ando et al., Appl. Phys. Express 11 023001 (2018).
 T. Nakano, M. Oogane, T. Furuichi, and Y. Ando. Appl. Phys. Lett. 110, 012401 (2017)

直流バイアス励磁法による平行フラックスゲートセンサの高感度化

小山大介1, 足立善昭1, 宮本政和1, 小野長幸2, 今村瑛2, 渡邊大輔2 (1:金沢工業大学, 2:NEC ネットワーク・センサ株式会社) Improvement of Sensitivity of a Parallel Fluxgate Sensor by DC-Biased Excitation D.Oyama¹, Y. Adachi¹, M. Miyamoto¹, N. Ono², A. Imamura², and D. Watanabe² (1:Kanazawa Institute of Technology, 2: NEC Network and Sensor Systems, Ltd.)

はじめに

フラックスゲート磁力計は直流から数 kHz までの周波数帯域において高感度な磁気計測が可能な磁気セ ンサであり、地磁気計測や、電流センサなどの工業用途に広く用いられている。フラックスゲート磁力計に は大きく分けて「直交型」と「平行型」があり、前者は笹田らによって基本波直交フラックスゲート磁力計 が開発され、心磁図計測ができるほどに高感度化されてきた ^D. 一方、平行型についても賀戸により直流バ イアスを加えた励磁電流と基本波検波によるフラックスゲート磁力計の高感度化が提案され²⁾,著者らもこ れまでに本手法による高感度化を試みてきたが3,原理実証や有効性の確認,駆動条件の最適化までは実現 できていなかった. そこで本研究では、市販の平行型フラックスゲート磁力計のセンサヘッドに対して直流 バイアスを加えた励磁と基本波検波を適用し、高感度化に関する有効性を明らかにする.

方法

市販の平行型フラックスゲート磁力計として, APS520A(Applied Physics Systems 社)を実験に用いることに した. Fig.1 に試作した駆動回路のブロック図を示す. なお,実験では3軸分のセンサを構成したが,スペ ースの都合により、1 チャンネル分しか描いていない. 駆動回路の構成は直交型フラックスゲート磁力計と 概ね同じである. 励磁電流印加部は正弦波発振回路と直流バイアス回路から構成される. 計測部はプレアン プと検波回路,積分回路,フィードバック用電圧-電流変換回路から構成される.発振回路の周波数は100 kHz とし、励磁と検波回路に使用した. 励磁電流の振幅及びバイアス量はそれぞれ 16.7 mA, 18.3 mA とした.

実験では APS520A を 2 台用意し、片方のセンサプローブは従来どおり市販品の駆動回路を接続し、もう片 方のセンサプローブには試作回路を接続した. 双方のセン サプローブを磁気シールドルーム内に並べて置き,1時間 の連続計測を実施した. なお, 各信号は 200 Hz の low-pass filter を通して収録した.

結果及び結論

Fig.2に計測した周波数スペクトルを示す. 交流パルス 電流を用いた従来法の駆動回路では25.5 pT/Hz^{0.5}(10Hz, 3 軸平均)であったが、製作した回路では 6.0 pT/Hz^{0.5} (同) となり、約1/4にノイズを低減することができた。直流バ イアス励磁と基本波検波による駆動は、平行型フラックス ゲートにおいても有効であることを明らかにした。

参考文献

- 1) H. Karo, I. Sasada, "Magnetocardiogram measured by fundamental mode orthogonal fluxgate array", J. Appl. Phys., 117, 17B322 (2015).
- 2) 賀戸久,磁気測定方法及び装置,特許第3651268,2005 年3月4日登録
- 3) D. Oyama, et. al., "Magnetic Marker Localization System Using a Super-Low-Frequency Signal", IEEE Trans. Magn., 50, 5101604 (2014).

Fig. 1 Block diagram of a parallel fluxgate magnetometer with dc-biased excitation current.

Fig. 2 Noise spectra measured with conventional and developed electronics
25aD - 4

高温超伝導コイルとインダクタンス変調方式 を用いた磁気センサの開発(II) 山下重弥*,松尾政明,笹山瑛由,吉田敬,円福敬二 九州大学システム情報科学研究院

Magnetometer Based on Inductance Modulation in Coils Made of High-T_c Superconductor (II) Shigeya Yamashita, Masaaki Matsuo, Teruyoshi Sasayama, Takashi Yoshida, Keiji Enpuku Kyushu Univ.

磁気センサは医療・バイオ検査、非破壊検査、材料物 性解析などの幅広い分野で応用されている。しかしなが ら、励起磁場中での動作が可能であり、かつ、1 Hz 程度 の低周波磁界を高感度に計測する磁気センサはこれま でほとんど開発されていない。本研究では、高温超伝導 コイルとインダクタンス変調方式を用いることにより、 これらの要求を満たす磁気センサの開発に取り組んで いる。

Fig. 1 にその等価回路を示す。検出コイル(L_p)と変調 コイル(L_m)は高温超伝導体で作製し、低抵抗(R_c)で接続 することにより、閉ループを形成している。信号磁束 ϕ_s が検出コイルに鎖交した場合には、閉ループに電流 I_s が流 れ磁束が変調コイルに伝達される。変調コイルに伝達され た磁束はインダクタンス変調方式を用いることで、端子 PQ 間に発生する電圧信号 V_s に変換される。この閉ループ の時定数は $\tau = (L_p + L_m)/R_c$ で与えられる。今回、接続抵 抗 R_c の値を計測し、この閉ループが伝達できる信号周波数 の下限を調べた。

Fig. 2 に、高温超伝導テープ線材(SuperPower 社 SF2050) を接続した時の接続抵抗 R_c の測定回路を示す。二つのテー プ線材はハンダ付けにより接合した。ハンダ接合部は幅 2 mm、長さ 1 cm である。Fig. 2 においてバイアス電流 I_B を 流し、液体窒素中の接合部に電圧 V_c が発生すると、室温に 配置した検出コイル(L_i =8.8 μ H、 R_i =75 m Ω 、内径 9 mm、 長さ 30 mm、巻数 52)に電流 $I_i = V_c/R_i$ が流れ、この電流が 作る磁界をフラックスゲートセンサ(Bartington 社 Mag-03) で測定する構成となっている。

計測した電流 I_i からハンダ接合部にかかる電圧 V_c (= $I_i \times R_i$)が得られる。ハンダ接合部に流れる電流 I_c (= $I_B - I_i$)と 電圧 V_c を用いて接続抵抗を測定した結果を Fig. 3 に示す。 図から R_c = 325 n Ω であることが分かった。これにより、 閉ループの時定数は $L_p + L_m = 115 \mu$ Hの場合には $\tau = 354 \text{ s}$ となり、3 mHz 程度の低周波磁束を伝達できること が示された。

Fig.3 Current-voltage characteristic of contact resistance

勾配磁界センサによる異物検出におけるローパスフィルタの カットオフ周波数の検討

笹田一郎

(笹田磁気計測研究所)

Cutoff frequency of the low-pass filter in detecting traveling magnetic particle by using a gradiometer Ichiro Sasada

(Sasada Magnetics and Sensors Laboratory)

はじめに

勾配磁界センサは一様な磁界入力に対しては不感であるの で、微少なサイズの異物検出に適している[1]. 異物は勾配磁 界センサの直下に置かれたシート上の物に付着していると し、勾配磁界センサに対し相対速度vでFig.1に示す方向に移 動する.センサは信号と同時に雑音を持つので、出力に低域 カットおよび高域カットのフィルタで不要な雑音を除去する が、信号帯域をどのように設定するかが重要である.本稿で はセンサの雑音を白色雑音として高域遮断周波数の決定法に ついて検討した.

異物からの鎖交磁束

まずFig. 1に示す平行配置の勾配磁界センサに対してz方向に帯磁した 異物の磁界がその移動と共にどのような鎖交磁束を引き起こすの かを有限要素法(COMSOL)によって計算した. 異物は直径50 μ mの 球でその磁化は $\mu_0 M$ =1 mTとし,センサコアは直径120 μ m,長さ 30mm,比透磁率10,000,センサヘッド間の離隔距離(B.L.)を 16mm,その2mm下をコアの先端からx軸方向-5 mmの所を異物球 が図示のように通過する.結果をFig. 2に示す.検出コイルがNタ ーンであれば,鎖交磁束はN倍にする.勾配磁界センサは励磁に よる変調を用いた磁束応答型であるので出力波形もFig. 2に相似に なる.

検討および結果

Fig. 2の波形に相似な出力電圧波形を仮定する. 波形の時間軸は異物 の移動速度を与えると決定する. v=1m/sとして解析した. 球がB.L. 距離を通過する時間Δtの2倍を周期とする周波数を特性周波数とす る. まず特性周波数の1/5でハイパスフィルタし, ローパスフィルタ のカットオフを特性周波数の2~7倍の間で変化させ, 波形のpeakpeak値を通過帯域幅Δfの平方根で除して(雑音として白色雑音を仮 定) SN比の指標とする. 結果をFig. 3に示す. これからカットオフ周 波数の最適値は特性周波数の3~4倍, 好ましくは3.5倍である.

Fig. 2 Magnetic flux linkage to the sensor head cores when magnetic particle travels beneath cores.

Fig. 3 SN ratio (arbitrary scale) vs. band width determined by the low-pass filter.

参考文献

1. Ahmed L. Elrefai, Ichiro Sasada, J. Appl. Phys. 117, 17C114 (2015); DOI: 10.1063/1.4913720

USBパワーで動作する可搬型FM-OFGマグネトメータ

笹田一郎

(笹田磁気計測研究所) USB power operated portable FM-OFG magnetometer Ichiro Sasada (Sasada Magnetics and Sensors Laboratory)

はじめに

著者が2001年に本学会で発表した「基本波型直交フラックスゲート(Fundamental-mode orthogonal fluxgate=FM-OFG)」は、これまで多くの協力者に恵まれその低雑音化と応用展開が進められてきた¹⁾.今回取り扱いが容易になるよう、6~7.5VのacアダプターやUSBパワーで動作するコンパクトなプロトタイプを開発した。本稿ではこのプロトタイプの概要と分解能および安定性について簡単に述べる.

1chFM-OFGシステム

Fig. 1にプロトタイプシステムの構成を示す。回路は入力磁界をキャンセ ルするフィードバック方式で動作する。単一の電源入力から回路内で±5V を生成する。基本波モードでセンサヘッドを駆動するための交流励磁電 流と直流バイアス電流はArduino²⁾で生成した32kHz矩形波でトランジスタ をドライブして生成する。同期整流には低電圧から動作するスイッチト キャパシタ回路を用いている。出力は増幅率1の直流結合,100倍および 1000倍の交流結合出力を備えている。前者は地磁気などの環境磁界計測 に、後者は生体磁気や異物の検出のために、変動磁界成分のみを高感度 に計測するためである。消費電力は約0.5Wである。簡易的な波形の観測 にはArduinoに実装されている10ビット~12ビットのAD変換結果をシリ

基本性能

センサヘッドには長さ30mm,幅0.5 mmのアモルファスリボンコアを pT/\sqrt{Hz} 用いている。ダイナミックレンジと感度は帰還抵抗Rfとフィードバッ ク巻線の巻線密度で決まるが、本システムではRf=2 kΩとすること で、±1mTが計測でき、1000倍したときの感度は55V/ μ Tである。セ ンサヘッドを磁気シールド内に設置し、0.16Hz以上の変動分のみを 取り出し1000倍したときの雑音スペクトル密度をFig. 2に示す。A)は 6Vacアダプターで、B)はUSBで電力供給しているが、A)の方が雑音は 少ない。ただ、B)の方でも大きな雑音増加は見られない。センサ ヘッドを磁気シールドに入れて、室温状態で4,000秒連続動作させて たときのオフセットのドリフトは1nT程度であった。

参考文献

- 笹田一郎, 電気学会論文誌 A(基礎・材料・共通部門誌) IEEJ Transactions on Fundamentals and Materials Vol.137 No.8 pp.448-453 (2017) DOI: 10.1541/ieejfms.137.448
- 2) https://www.arduino.cc

Fig. 1 Functional blocks in the potable FM-OFG magnetometer system.

5 2 1

tek0889CH1.csv

0.5 A) Hz

Fig. 2 Noise spectrum density: A) powered by ac adaptor, B) powered by USB from MacBookPro.

FPGA を用いた生体磁気計測用マルチチャンネル MI センサシステムの開発

楊 紫欽、馬 家駒、内山 剛

(名古屋大学)

Development of multi-channel MI sensor system for bio-magnetic measurement based on FPGA Z.Yang, J.Ma, T.Uchiyama

(Nagoya University)

<u>はじめに</u>

MI センサは、磁気センサの一種として、科学計測、工業、生体磁気信号の検出など様々な領域に応用が 検討されている。生体磁気計測方面は、例えば、心臓から発生した空間的な磁場を測るため、マルチチャン ネルシステムの開発が求められている。FPGA(field-programmable gate array)とは、構成の設定ができ、用 途に応じてプログラム可能なゲートアレイの集積回路である。そして、高性能の AD コンバータ LTC2500 を 合わせて利用することにより、高いサンプリング周波数の場合でも低ノイズレベルが得られる。今回は Cyclone V Soc device 型の FPGA を用いて、MI センサの高精度低ノイズレベルのマルチチャンネル計測システ ムを構築することを目的として実験を行った。

<u>実験方法</u>

図1に示した MI グラジオメーター回路による、二つの MI センサのアナログ信号をサンプリングして、その電圧差を AD コンバータに入力する。FPGA のプログラムにより AD 変 換とデータ処理を行って、得られた結果を PC に入力する。

実験結果

FPGA のプログラムにより、高性能の AD コンバータと デジタルフィルタを用いて、磁気シールドの中にサンプリング周波数が

図 1.MI グラジオメーター回路

1KHz の場合でセンサのノイズスペクトラムを測定した。図2に示されるように、1Hz の時はノイズレベルが約2pT、10Hz の時はノイズレベルが1pT 以下となる。続いては環境ノイズの抑制効果を検証した。図3に示されるように、磁気シールドなしの場合で時間領域に環境ノイズはほぼ60Hz の電源ノイズである。デジタルフィルタを利用すると、サンプリング周波数が100Hz の場合で環境ノイズがきれいに除去され、RMS ノイズが約15pT である。結果として、磁気シールドがなくても高精度のサンプリングもできる可能性を示した。

図 3. 環境ノイズの抑制効果

FPGA を用いた適応型 MI センサシステムの開発と AD コン

バータの最適化

史 柯、内山 剛 (名古屋大学) Optimize MI sensor circuit and ADC with FPGA Shi Ke 、T.Uchiyama (Nagoya Univ.)

<u>はじめに</u>

従来の MI センサ回路は S/H 回路によって、電圧信号を取り出しているが、AD コンバータに 回路を接続する場合、AD コンバータの AD 変換動作とサンプリングスイッチの動作部分が重複 し、サンプリングのタイミングによりノイズが混入する可能性がある。したがって、本研究は、

FPGA を利用した MI センサー回路により、 AD 変換動作のタイミングの調整およびア ナログスイッチの動作のタイミングの調 整をともに可能とした、適応型 MI センサ システムの最適化を目指している。

実験方法

FPGA を用いた、MI センサシステムの開 発により、サンプリングスイッチ動作と AD コンバータ動作のタイミングをプログ ラミングにより調整可能とし、SNR を測定 した。

実験結果

Fig. 1 はシステムの構成を示してい る。センサー回路は FPGA により制御さ れ、ADC も FPGA にコントロールされてい る。Fig. 2 はセンサーに振幅 150 p T の 10Hz 正弦磁界を印加した場合の SNR を 示している。実験結果によると、サンプ リングスイッチ動作と AD コンバータ動 作の重複を避けた場合に、ノイズレベル が低いことが明らかになった。

 $MI \tau \tau \tau$

Fig.1 Schematics of the MI sensor systems.

Fig.2 The S/N ratio of the system by frequency analysis.

 Shingo Tajima, et al., "High Resolution Magneto-impedance Sensor with TAD for Low Noise Signal Processing,"
Proc. IEEE INTERMAG, 2014.

フリップチップボンディングによる高周波駆動薄膜磁界センサ

工藤春陽, 植竹宏明*, 小野寺英彦**, トンタット ロイ, 薮上 信, 早坂淳一*, 荒井賢一* (東北大学,*電磁材料研究所,**東北学院大学)

Flip-chip bonded high-frequency thin-film magnetic field sensor

H. Kudo, H. Uetake^{*}, H. Onodera^{**}, L. Tonthat, S. Yabukami, J. Hayasaka^{*}, K. I. Arai^{*} (Tohoku University, *Research Institute for Electromagnetic Materials, **Tohoku Gakuin University)

フリップチップボンディングにより実 はじめに 装したコプレーナ構造の高周波駆動薄膜センサを開 発し,磁性薄膜の膜厚と位相変化感度,および低周波 磁界検出について検討した.

計測方法 Fig.1に直線コプレーナ線路により構成 される薄膜センサの構造を示す ¹⁾. センサ素子はガラ ス基板上(25 mm×25 mm, 1 mm 厚)にアモルファス CoNbZr 薄膜(18.2 mm×1.15 mm)を RF スパッタによ り成膜し, SrTiO 薄膜を介して Cu 薄膜によるコプレ ーナ線路(長さ19.8 mm, 0.3 mm 幅, ギャップ 0.05 膜厚 4 μm) をそれぞれリフトオフにより加工 mm, した. コプレーナ端部の電極はフリップチップボンデ ィングにより基板へ実装した. CoNbZr 薄膜は回転磁 界中熱処理(300℃,2時間 0.3 T)の後,静磁界中熱 処理(300℃,1時間 0.3 T)を施し、コプレーナ幅方 向に異方性を付与した.キャリア信号はコプレーナ導 体を流れ, CoNbZr 薄膜に通電しない. センサの評価 は磁界をコプレーナ長手方向へ, ヘルムホルツコイル で 0-10 Oe の範囲でゆっくり変化させ, ネットワーク アナライザ (R3767CG) の透過法測定によりキャリア の位相変化を S21 から求めた. 周波数範囲は 0.3 MHz -4 GHz とし、バンド幅は1 kHz、平均化回数は16 回 とした.

計測結果 Fig. 2 に Fig. 1 のボンディング実装後の センサについて、CoNbZr 薄膜の膜厚とキャリアの外 部磁界に対する位相変化の傾き(感度)の関係を示す. センサ素子はそれぞれの膜厚で約10個試作した.キ ャリアのゲインは-40 dB 以上の範囲とした. 位相変化 感度は CoNbZr 膜厚が1 μm のときに最も高かった. これは磁化が面内磁化回転を得られやすいことを反 映していると考えられる. ウエハプローブを用いて測 定したボンディング前の同センサにも同様の傾向が 見られた.これはフリップチップボンディングにより インピーダンス整合がおおむね維持されるため高感 度な周波数帯等の変化が小さかったためと考えられ る. ボンディング後の最高感度は 295.8 deg/Oeで, キ ャリア周波数は1670 MHz, 外部磁界は4.5 Oe となっ た. 次に, 高速 AD コンバータ (FPGA 搭載, NI 5734) を用いてデータを高速で処理し、センサに微弱磁界が 加えられたときのキャリアの振幅変化を測定した. Fig. 3 にセンサへ 20 Hz, 2.7 × 10⁻⁹ Tの微弱磁界を与 えた時のセンサ出力のスペクトルを示す. ノイズレベ

Fig. 2 Phase change as a function of thickness of CoNbZr film.

6

CoNbZr thickness (µm)

8

10

12

50

Fig. 3 Signal and noise of sensor when a small AC field (2.7 nT and 20 Hz) was applied.

参考文献 1) H. Uetake, S. Yabukami et al. J. Magn. Soc. Jpn, 38 (3-1). pp. 83-86 (2014)

ルは 20 Hz 付近でおおよそ 100 pT/√Hz 程度となっ t.

高周波近傍磁界測定における新しい同期手法の提案

立岡大青,石田竜太,枦修一郎,石山和志

(東北大学電気通信研究所)

Proposal of new synchronization method in high frequency near magnetic field measurement D. Tatsuoka, R. Ishida, S. Hashi, K. Ishiyama

(RIEC Tohoku University)

1. はじめに

高周波近傍磁界計測用プローブとして一般的にループコイルが用いら れている¹⁾が、金属製のため本来の磁界分布を乱してしまう²⁾。そのため本 研究では、金属プローブに比べ磁界を乱しにくい磁気光学結晶のガーネッ トとパルスレーザを利用し、ストロボ法により交流磁界の位相情報を含め て低侵襲に測定可能な高周波近傍磁界計測システム³⁾について検討を行っ ている。ストロボ法を使う上ではレーザのパルス発振と被測定信号の同期 が必要である。先行研究では基準となる同期信号を準備しそれを用いて被 測定磁界とレーザ発振を同期させていた。本研究では、被測定磁界を発生 させるマイクロストリップライン(MSL)の通電信号をレーザ発信トリガ信 号として用いる手法を試みる。先行研究³⁾のとおり被測定磁界周波数は数 GHz帯であり、かつレーザパルス周波数の整数倍であるため、分周器を用 いて低周波数化するとともに増幅してレーザ発信のためのトリガ信号とし た。

Fig.3 Waveform for laser trigger signal

2. 実験方法

Fig.1 に本研究における磁界測定装置の概略を示す。被測定対象磁界を 発生するMSLの近傍に配置したガーネットにレーザ光を垂直に照射し反 射光を検出する。反射光はガーネットの磁気光学効果により、垂直磁界強 度に依存した偏光状態の変化が起こるため、それを検出することで垂直方 向成分の磁界強度が測定できる。今回は検証実験として信号発振器からの 高周波信号を被測定対象より発生する信号と見立てレーザに入力する。ま

た、この信号をレーザの発振可能周波数帯及び電圧レベルにするため、5.12GHzの信号を分周器にて 1/64 分 周するとともに増幅し、80MHzのレーザの発振トリガ信号を生成した。また、発生磁界の特定位相でレーザ を発振させるストロボ法では、レーザの発振タイミングの時間的ずれであるジッターが、測定の正確性に大 きく影響を及ぼす。今回は分周器、アンプによるジッターの増加が見込まれるため、作成したレーザの発振 トリガ信号のジッターに特に着目して測定を行った。

3. 実験結果

信号波形をオシロスコープにて観測した結果、波形のタイミングジッターはFig.3 より 50psであった。 5.12GHzの周期が 200psであることから、本手法でもストロボ法での位相レベルの判断が可能であるため、 レーザの発振トリガ信号として使うに妥当であり、磁界計測が可能であると考えられる。この手法を用いた 磁界計測結果については講演会で報告する。

- R. Paul: Introduction to Electromagnetic Compatibility 2nd edition, pp. 10-11, John Wiley, NewYork (2006).
- M. Takahashi, K.Kawasaki1, H.Ohba, T.Ikenaga, H.Ota, T.Orikasa, N.Adachi, K.Ishiyama and K.I Arai J. Appl. Phys. 107, 09E711 (2010).
- 3) H. Nasuno, S. Hashi, and K. Ishiyama IEEE Trans . vol 47, NO. 10, Oct. 2011

フレキシブルマイクロストリップ線路型プローブによる磁性薄膜の 67 GHz までの高周波透磁率測定

能澤昂平,沖田和彦,トンタットロイ,薮上信,遠藤恭,島田寛*,斉藤伸,内海良一* (東北大学,*東栄科学産業)

Permeability Measurements of Thin Film Using a Flexible Microstrip Line-Type Probe Up To 67 GHz K. Nozawa, K. Okita, L. Tonthat, S. Yabukami, Y. Endo, Y. Shimada* S. Saito, R. Utsumi* (Tohoku University, *Toei Scientific Industrial co., ltd,)

<u>はじめに</u>

高周波透磁率の測定は磁性材料の高周波応用に不可欠である.著者らはフレキシブルマイクロストリップ線路型(以下 MSL と略)プローブを開発し,磁性薄膜の 40 GHz までの透磁率計測方法を報告した¹⁾. 今回プローブの小型化,強磁場印加等により 67 GHz までの広帯域化に成功したため報告する.

<u>計測方法</u>

測定対象には一軸異方性を付与した CoFeB 薄膜²⁾を用いた. ヘルムホルツコイルの磁場と試料の容易軸, MSL プローブの長さ方向がそれぞれ平行になるように設置し, 試料と MSL は PET フィルム (100 μ m)を介して近接配置した. Fig. 1 のようにネットワークアナライザで透過係数 S_{21} を測定し, 等価インピーダンスを100(1 – S_{21})/ S_{21} とした. 比透磁率は, 強磁場 (2.00 T) 印加状態で校正し測定磁場との差分をとることでインピーダンス変化を求め,表皮効果を考慮し Newton-Raphson 法で最適化した¹⁾.

<u>計測結果</u>

Fig. 2 に直流磁界 14.0 kOe を磁化容易軸方向へ印 加した時の磁化困難軸方向の比透磁率を示す.g因 子を2.12 とすると,Landau-Lifshitz-Gilbert 方程式の 渦電流損を考慮した理論値と概ね一致した.Fig.3 に 共鳴周波数と直流磁界の関係を示す.ネットワーク アナライザの測定限界である 67 GHz まで比較的良 好な共鳴周波数の一致が見られた.

<u>謝辞</u>

CoFeB 薄膜をご提供頂きました崇城大学の宗像誠 教授に感謝致します.本研究の一部はビジネス・イ ンキュベーション・プログラムの研究成果である.

<u>参考文献</u>

- S. Yabukami et al., J. Magn. Soc. Jpn., 41, 25-28 (2017).
- M. Namikawa et al., J. Magn. Soc. Jpn., 27, 371-374 (2003).

Fig. 1 Schematic diagram of permeability measurement system.

Fig. 2 Relative permeability of CoFeB film (H_{dc}=14.0 kOe)

Fig. 3 Ferromagnetic resonance (FMR) frequency as a function of bias field.

異常ネルンスト効果を利用した フレキシブル熱流センサーの開発 ^{周偉男,中山裕康, <u>桜庭裕弥</u> (物材機構)}

Development of flexible heat current sensor using anomalous Nernst effect

W. Zhou, H. Nakayama, Y. Sakuraba

(NIMS)

[背景]

熱流センサーは、熱の流入・流出をベクトル量として、極めて高い感度と応答性で観測できることから、 熱の流れを可視化するセンサーとして IoT での活用されることが期待されている。しかしながら、現在 市販されるゼーベック型熱流センサーは、センサー自体の熱抵抗が高い、フレキシビリティーに限界が ある、センサーの単価が高い、等の大きな課題がある。我々は、これらの課題を解決するため、磁性体 に対し熱流を流した際に生じる熱電効果「異常ネルンスト効果」を利用した新しい熱流センサーを目指 した研究を進めている。異常ネルンスト効果は、磁化と温度勾配の外積方向に電界を生じるさせるため、 磁性線を面内方向で接続した極めて簡便な熱電対列で直列的に出力電圧を増大可能であり高い感度が 期待できるとともに¹⁾、延性のある磁性金属を低熱抵抗なフレキシブル基板上に成膜し利用すれば、高 いフレキシビリティーと低い熱抵抗の両立が期待される。その実現に向け、ネルンスト効果を発現する 材料には、異常ネルンスト効果による 10µV/K 以上の高い熱電能、並びに材料自体の反磁場や外乱磁場 の影響を受けにくい低い磁化と大きな保磁力を持つことが求められる。本講演では、近年の材料開拓の 成果並びに異常ネルンスト型熱流センサーの性能評価の結果について言及する。

[実験方法]

異常ネルンスト型熱流センサーの試作品は、CoやFeをベースとした材料の磁性膜を、リソグラフィーによって面内型熱電対列に加工することで作製し、図1に示すセッティングによって熱流への感度係数を評価した。磁性線幅は 50-400μm であり、1cm²サイズによりこれを 10-100 本直列に連結させた。 [実験結果]

図1に示す通り、ヒーター出力を変えて異常ネルンスト電圧の磁場依存性を測定した結果、外部磁場ゼロでもネルンスト電圧出力が得られ、その出力はゼーベック熱流センサーで同時計測された熱流密度に対して線形的に応答することから、異常ネルンスト効果が熱流センサーとして、外部磁場ゼロでも利用できることが示された。試作品においての感度は現行ゼーベック型より1-2桁小さいが、磁性線数を増やすことや今後の材料開拓で感度の改善は可能である。

参考文献

 Sakuraba et al., APEX 6,033003
(2013),
(2] 桜庭裕弥,日本熱 電学会 15,36 (2018)

謝辞

この成果は、国立研究 開発法人新エネルギ ー・産業技術総合開発 機構(NEDO)の委 託業務の結果得られた。

図1 試作した異常ネルンスト熱流センサー(400µm 線幅、10 本直列接続)の電圧出力の磁場依存性と、ゼーベック熱流センサーで同時観測した熱流密度依存性。

強制振動による逆磁歪効果型歪みセンサの特性評価

曽良大輔*、久保結人、荒井薫、枦修一郎、石山和志(東北大学)

Characteristic evaluation of reverse magnetostrictive effect strain sensor by forced vibration D. Sora, Y. Kubo, K. Arai, S. Hashi, K. Ishiyama (Tohoku Univ.)

はじめに

我々は、橋梁等の老朽化インフラの振動特性から 健全性を診断可能な振動センサとして、軟磁性磁歪 薄膜の逆磁歪効果を用いた高感度歪センサを振動セ ンサへと応用する研究を行ってきた(1)。先行研究に おいてはセンサをカンチレバー構造とし、自由振動 させることでその特性の評価を行っていたが、この 方法ではカンチレバーの機械的共振周波数において 大きく振動を検知してしまい、センサの特性を正し く測定することができていなかった。そこで別の歪 印加手法として、センサを接着した圧電素子を伸縮 させ直接歪をかける方法を提案する。自由振動では、 振動の際センサに与える歪量を制御出来なかったが、 この手法を用いれば歪量は制御可能である。また、 自由振動の際はセンサにバイアス歪をかけるために 錘を乗せる必要があったが、圧電素子を用いる際は バイアス電圧を印加すればバイアス歪をかけること が可能になる。強制振動のための予備実験として、 磁性膜を成膜していない Si 基板を圧電素子に接着 し、直流電圧を印加することで歪を与えることを試 みた。

実験方法

直径 50mm、厚さ4mmの圧電素子上に厚さ200μm、 8.5mm×25mmの Si 基板を Fig. 1 に示すように接着 した。圧電素子に-1000V~1000Vの直流電圧を印加 し、歪ゲージを用いて Fig. 1 に示す三ヶ所の歪の測 定を行った。

実験結果及び考察

電界に対する歪の測定結果を Fig. 2 に示す。圧電 素子上の歪みゲージは電界が 250V/mm の際、おお よそ 200ppm を検知し、Si 基板上の歪ゲージはおお よそ 100ppm の歪を検知した。以上の結果から、Si 基板には 100ppm 程度の歪がかけられており、特性 測定の際にはセンサに十分な歪を印加することがで き、強制振動による測定が可能であると考えられる。 実際の強制振動による特性測定の結果は講演の際に 報告する。

Fig. 1 Schematic diagram of the piezoelectric element.

<u>参考文献</u>

 久保, 枦, 横井, 荒井, 石山, IEEJ Trans. SM, 138, 4 (2018)

磁性ワイヤ・コイル分離型 Wiegand センサを用いた 振動発電と等価回路解析

飯島榛史、孫小雅、原和江、酒井貴史、山田努、竹村泰司 (横浜国立大学)

Vibration-type energy harvester using Wiegand sensor with separated wire/coil and its equivalent circuit analysis

Haruchika Iijima, Xiaoya Sun, Kazue Hara, Takafumi Sakai, Tsutomu Yamada, Yasushi Takemura (Yokohama National University)

<u>はじめに</u>

Wiegand ワイヤ¹⁾(熱ひねり加工を施した FeCoV 磁性線)は、大バルクハウゼンジャンプと呼ばれる高速 な磁壁移動によって急峻な磁化反転を生じ、検出コイルを設置することでこの磁化反転からパルス出力が得 られる。この出力は無電源で得られることや外部磁界の時間変化に依存しないなどの特徴を有しており、エ ネルギー・ハーベスティング素子への応用が着目されている²⁾。本研究では、複合磁気ワイヤを振動させる ことにより生じるパルス出力のエネルギー量を測定した。

実験方法と結果

本研究では、長さ 13 mm、0.25 mm 径の Wiegand ワイヤを用いた。検出コイルと励磁用磁石をワイヤ の近傍に置き、ワイヤの長手方向を励磁用磁石に対 して垂直に振動させた(Fig.1)。ワイヤの磁壁移動に より生じる漏れ磁束をコイルで検出し、正負それぞ れのパルス出力の1振動(1パルス)当たりのエネ ルギー量を求めた。エネルギーは、検出コイルに負 荷抵抗を接続し、その消費電力を算出した。また Wiegand ワイヤに対する励磁磁石と検出コイルの相 対位置を変えてエネルギー量の変化を検討した。

ワイヤの端を励磁し、検出したエネルギー量の測 定結果を Fig.2 のようになる。励磁用磁石は NdFeB

(4×4×<u>5</u> mm³, <u>着磁方向</u>)、検出コイルは(10×10 mm²の平面型, 500 turn)である。これまでに Wiegand ワイヤに検出コイルを巻いた従来型の Wiegand セン サを用いた振動発電³⁾や、今回同様のワイヤ・コイ ル分離型での回転センサへの応用⁴⁾を報告してきた が、これらの既報と今回得られた微小振動ワイヤか らの発電との差異や優位点などを考察した。

具体的な励磁方法や検出コイルの位置等の詳細、 等価回路を用いた電力の解析は当日発表する。

- Wiegand and Velinsky, U.S. Patent 3,820,090, 1974.
- 2) Takemura *et al.*, *IEEE Trans. Magn.*, **53**, 4002706, 2017.
- 3) Takebuchi et al., J. Magn. Soc. Jpn., 41, 34, 2017.
- 4) 小原他, J. Magn. Soc. Jpn., 34, 347, 2010.

Fig. 1 Configuration of magnetic wire, magnet and detection coil.

Fig. 2 Consumed energy in the load resistor connected to the Wiegand sensor depending on the vibration amplitude of the excitation coil.

Wiegand ワイヤを用いた小型ワイヤレス給電

川添駿平、和口修平、酒井貴史、山田努、竹村泰司 (横浜国立大学)

Wireless power transmission using a Wiegand wire Shumpei Kawazoe, Shuhei Waguchi, Takafumi Sakai, Tsutomu Yamada, Yasushi Takemura (Yokohama National University)

はじめに

熱ひねり加工を施した FeCoV 磁性ワイヤ(Wiegand ワイヤ)¹は、励磁周波数に依らない高速な磁壁移動に よって、大バルクハウゼンジャンプと呼ばれる急激な磁化反転を生じるため、この周りに検出コイルを設置 することでこの磁化反転からパルス出力が得られる。励磁周波数が 10 kHz 程度以下の低周波帯では、MnZn フェライトコアによる誘導起電力の増幅より、大バルクハウゼンジャンプによる電力の増幅が優位であると 報告されている²⁾。また、集積回路の低消費電力化などにより、例えば 100 µW 以下の電力であっても十分 な用途性がある。よって本研究では Wiegand ワイヤをコアに用いることにより、筒状の電磁誘導型ワイヤレ ス給電の小型化を想定し、1 kHz 以下の交流磁界によりワイヤを励磁した場合に負荷で得られる電力を測定 した。

実験方法

Fig.1 に示すように、Wiegand ワイヤ(¢:0.25 mm, length:11 mm)の周りに 3000 turn の給電用検出コイル を設置し³⁾、さらにその外側にはワイヤの中央部が 励磁されるように励磁コイルを置き、正弦波交流磁 界±40 Oe で励磁させた。検出コイル側の回路には、 ダイオードブリッジ及びコンデンサを接続し、正負 双方のパルス出力の整流・平滑化を行い、負荷での 消費電力を算出した。

実験結果

Fig. 2 に励磁周波数を f=1 kHz, 800 Hz, 600 Hz, 400 Hz, 200 Hz とした場合における、負荷抵抗値 R と負荷での電力 P の関係を示す。f=1 kHz で R=3 kΩとした場合、この負荷で 100 μ W 程度の電力が得られることを確認した。また、高周波ほど負荷抵抗依存が大きく、低周波ほど最大電力が得られる負荷抵抗値が大きいことが分かった。

我々は Fig.1 に示す回路の他に、倍電圧整流回路 を用いた電力測定や、コンデンサ挿入による共振の 影響について検討を行っている。回路パラメータの 詳細や、最大電力を得るための検討について当日報 告する。

- 1) J. R. Wiegand and M. Velinsky, U.S. Patent 3, 820, 090, 1974.
- 2) Takahashi et al., J. Mag. Soc. Jpn. 42, 49, 2018.
- 3) Takemura et al., IEEE Trans. Magn. 53, 4002706, 2017.

Fig. 1 Configuration of measurement.

Fig. 2 Electrical power consumed in the load resistance.

山崎 健太¹,太田 柊都¹,岩見 晃希¹,古屋 一輝¹, 久保 俊哉²,宮本 光教²,曽根原 誠¹,佐藤 敏郎¹ (¹信州大学,²シチズンファインデバイス)

Fundamental study on high S/N ratio optical probe current sensor using sensor head with collimator lens K. Yamazaki¹, S. Ota¹, K. Iwami¹, K. Furuya¹, T. Kubo², M. Miyamoto², M. Sonehara¹, T. Sato¹ (¹Shinshu University, ²Citizen Finedevice Co.,Ltd.)

はじめに

筆者らは、電磁ノイズの影響を受け難く、直流から高周波まで測定可能な電流センサの実現を目指し、 Co-MgF₂ナノグラニュラー磁性膜の Faraday 効果を利用した光プローブ電流センサの研究・開発を進めている¹⁾.本稿では、センサヘッドにコリメータレンズを利用し²⁾、磁性膜への入射光を集光させ、本電流センサの S/N 比を高くする手法を提案した.

実験方法

Fig. 1 に示すように、本センサヘッドは偏波保持ファイバ (PMF) から出射した直線偏光がコリメータレンズにより集光され、磁性膜を透過し、誘電体ミラーで反射、再び磁性膜を透過、再度コリメータレンズにより集光され PMF に入射する構成である. Fig. 2 に示す光プローブ電流センサのセンサヘッド部を Fig. 1 の構成とし、800 kA/m \rightarrow -800 kA/m \rightarrow 800 kA/m と磁界 *H* を印加した場合の各偏光強度 *P*_P, *P*_Sを測定した. Faraday 素子には、Co-MgF₂ナノグラニュラー薄膜 (Co:MgF₂ = 1:2、厚さ 1.38 µm)¹⁾ を使用した.

測定結果

Fig. 3 にコリメータレンズの有無における光プローブ電流センサの磁界と各偏光強度の関係の測定結果を示す. Fig. 3 より、コリメータレンズを使用することで約3倍の光強度が得られた.本電流センサのセンサ出力は、偏光強度の最大値 P_{max} および Faraday 効果による偏光面の回転角(単位磁界当たりの Faraday 回転角 θ_{F} ' [o (A/m)])の積で表され、S/N 比に依存する.前述の通りコリメータレンズの使用で P_{max} が約3倍増大したため、S/N 比が約3倍の高くなる可能性が示された. 今後は、更に高 S/N 比化を図るため、集磁用小型磁気ヨークの併用も検討する³.

Fig. 2 Optical system for optical probe current sensor.

- M. Miyamoto, T. Kubo, Y. Fujishiro, K. Shiota, M. Sonehara, T. Sato, "Fabrication of Ferromagnetic Co-MgF₂ Granular Film with High Transmittance and Large Faraday Effect for Optical Magnetic Field Sensor", *IEEE Trans. Magn.*, 54, 11, #2501205, 2018.
- T. Jitsuno, K. Tokumura, H. Tamamura, "Laser ablative shaping of collimator lens for single mode fiber", OFC 2001, Tech. Digest Postconference Edition, #7091585, 2001.
- K. Yamazaki, Y. Fujishiro, K. Shiota, K, Iwami, M. Sonehara, T. Sato, "Study on shape of magnetic-yoke for Faraday-effect optical prove current sensor", *The 42nd Annual Conf. Magn. Jpn.*, 14aD-9, 2018.

高い温度安定性を有する リング干渉方式光プローブ電流センサの基礎検討

古屋 一輝¹, 岩見 晃希¹, 太田 柊都¹, 山崎 健太¹, 久保 俊哉², 宮本 光教², 曽根原 誠¹, 佐藤 敏郎¹ (¹信州大学, ²シチズンファインデバイス)

Fundamental study on ring interferometric optical probe current sensor with high temperature stability K. Furuya¹, K. Iwami¹, S. Ota¹, K. Yamazaki¹, T. Kubo², M. Miyamoto², M. Sonehara¹, T. Sato¹ (¹Shinshu University, ²Citizen Finedevice Co.,Ltd.)

はじめに

筆者らは、電磁ノイズの影響を受け難く、直流から高周波まで測定可能な電流センサの実現を目指し、 Co-MgF₂ナノグラニュラー磁性膜の Faraday 効果を利用した光プローブ電流センサの研究・開発を進めている¹⁾.本稿では、高い温度安定性すなわち周囲温度特性に優れたセンサ実現のためにリング干渉計を応用したリング干渉方式光プローブ電流センサを検討し²⁾、その結果について述べる.

実験方法

Fig. 1 (a)に従来の透過型 Faraday 効果型光プローブ電流センサの光学系を示す.本電流センサは直線偏光を 磁性膜に入射し,透過光を P 偏光と S 偏光に分光させ,これらの光強度差 ΔP [W]を電流値として換算する¹⁾. しかし,周囲温度に変化が生じた場合,使用している偏波保持ファイバ (PMF)の複屈折率と伝送損失に変化 が生じて温度ドリフトが生じてしまう.複屈折に伴う温度ドリフトの補償,および伝送損失の温度変化に伴 う光強度の変動には,それぞれ PMF の Slow 軸および Fast 軸の両軸を利用して光を伝搬させる方法,および P 偏光と S 偏光の光強度差 ΔP [W]をセンサ出力とすることが有効である.以上を踏まえて設計したリング干 渉方式の光学系を Fig.1 (b)に示す.

PM1

PM2

PBS 3

測定結果

恒温槽 (ESPEC; SU-240) 中にセンサヘッド部を入れ, -40~85 [°C]の間で, P 偏光とS 偏光の光強度を測定し, それらの差分 ΔP を算出した. Fig. 2 に従来の透過型強 度変調方式と本稿提案のリング干渉方式の温度 T [°C] に対する光出力の差 ΔP [W]を示す. Fig. 2 より,透過型 強度変調方式では測定した温度範囲内で約 14 µW の温 度ドリフトが確認された.一方,リング干渉方式では 温度ドリフトが 5 µW 程度であり,前述の通り温度変化 の補償ができたためと考えられる. 40°C 以上で,温度 ドリフトが悪化しているが,センサヘッド部で使用し ている QWP の温度特性が原因であると考えられる.

参考文献

- M. Miyamoto, T. Kubo, Y. Fujishiro, K. Shiota, M. Sonehara, T. Sato, "Fabrication of Ferromagnetic Co-MgF₂ Granular Film with High Transmittance and Large Faraday Effect for Optical Magnetic Field Sensor", *IEEE Trans. Magn.*, 54, 11, #2501205, 2018.
- H. Tamura, H. Tozuka, T. Nakaya, O. Kamada, "Ring interferometric magnetic field optical sensor using a garnet single crystal", *J. Magn. Soc. Jpn.*, 34, 4, pp. 537–542, 2010.

(b) Novel ring interferometric type
Fig. 1 Schematic view of two kinds of optical probe sensor system.

QWP(45°)

QWP(-45°)

Fig. 2 Relation between optical intensity differences ΔP and temperature *T*.

部分励磁した Wiegand ワイヤの磁化過程評価

酒井貴史、山田努、竹村泰司 (横浜国立大学)

Evaluation of magnetization process of partially excited Wiegand wire Takafumi Sakai, Tsutomu Yamada, Yasushi Takemura (Yokohama National University)

はじめに

Wiegand ワイヤにおける大バルクハウゼンジャンプを伴う急峻な磁化反転は、検出コイルにパルス電圧 を誘起する¹⁾。この出力は無電源で得られることや外部磁界の時間変化に依存しないなどの特徴を有して おり、無電源センサなどへの応用が期待されている²⁾。本研究では、ホール効果を用いて Wiegand ワイヤ から出る磁束から磁壁移動を測定した。

<u>実験方法</u>

ホール素子(ASAHI KASEI 社 HG-166A-2G)を ワイヤ近傍に2つ設置し、励磁コイルによって磁 化反転させた。励磁位置に対して片一方に2つの ホール素子を設置し(Fig.1)、一方向の磁壁移動を 測定した。また、ホール素子と同じ位置に検出コ イルを2つ設置して磁壁移動に伴うパルス電圧も 同時に測定し、ホール素子と検出コイルのそれぞ れの距離と出力の時間差から磁壁移動を観測し た。

実験結果

設置したホール素子から得た磁束と検出コイ ルから得たパルス波形を最大値で規格したもの を Fig. 2 と Fig. 3 に示す。ホール素子と検出コイ ルどちらの場合においても励磁コイルからの距 離に対応した波形に時間差が観測された。しかし、 検出コイルから得られた時間差に比べ、ホール素 子から得られた時間差が大きいことが分かった。 これにより、ホール素子で観測される磁束の変化 は Wiegand ワイヤ全体の磁化過程を示しており、 ワイヤ内部の磁化過程の解明に有用であると考 えられる。磁化過程の詳細については当日発表す る。

<u>参考文献</u>

- J. R. Wiegand and M. Velinsky, U.S. Patent 3,820,090, (1974).
- Y. Takemura, N. Fujinaga, A. Takebuchi, and T. Yamada, IEEE Trans. Magn., 53, 4002706, (2017)

Fig. 1 Configuration of wire, coil and Hall element.

Fig. 2 The magnetic flux measured by Hall element.

Fig. 3 The output voltage of pickup coil.

90 度磁気結合膜の偏極中性子線反射率による微細磁気構造解析

鍾永師¹, 永島玄¹, 堀池周¹, 花島隆泰², 黒川雄一郎¹, 湯浅裕美¹

(¹九州大シス情,² CROSS)

The fine magnetic structure of magnetic multilayer with 90 degrees magnetic coupling layer by using Polarized Neutron Reflectivity analysis

Y. Zhong, G, Nagashima, S. Horiike, T. Hanashima, Y. Kurokawa, H, Yuasa

(¹ Faculty of Information Science and Electrical Engineering, Kyushu University, ² CROSS)

Recently antiferromagnetic (AFM) spintronics are drawing attention owing to the high resonance frequencies and zero stray fields. It has been theoretically reported that spin transfer torques (STT) in AFM materials can be obtained ^[1]. However, it is hard to directly observe spin torque oscillation (STO). Comparing to this, we fabricated the novel quasi-AFM layer which has multiple domains with alternatively antiparallel magnetization by using biquadratic magnetic coupling between two ferromagnetic (FM) layers through Fe-O layer. The magnetic property of the quasi-AFM layer is expected to have properties that are intermediate between AFM and FM. The macroscopic result of its magnetic property is shown in ref. [3], and the crystal structure was also be reported in ref. [4]. And to analyze the magnetic structure, we carried out polarized neutron reflectivity (PNR) analysis by BL17 SHARAKU in MLF, J-PARC.

The Ta/Ru/IrMn/CoFe(A)/Fe-O/CoFe(B)/Cu/CoFe(C)/Cu/Ta films were sputtered on thermal oxidized Si wafers and annealed in a field to fix the magnetization of CoFe(A) in x direction by IrMn. We measured the polarized neutron reflectivity of this film and used the software named GenX to fit the data, from which we can find out the magnetization direction and magnetic moment of the film.

Fig.1 (a) shows the M-H curve of the film, which means the magnetization of CoFe(A) and CoFe(B) were coupled with angles of about ± 90 degrees through Fe-O and the CoFe(B) had become the quasi-AFM. The schematic magnetization images and fitting result is shown in Fig.1 (b). We can see that the magnetization of CoFe(A) was fixed in x direction and the magnetization of CoFe(C) had reversed in low field. The CoFe(B) is expected to be quasi-AFM and the x component of magnetization should be zero. However, the result indicates the CoFe(B) had magnetization of $1.35 \mu_{\rm B}$ in x direction, which means the biquadratic coupling was not strong enough and the magnetization of it was not completely antiparallel. The average angle between the magnetization of CoFe(A) and CoFe(B) was estimated as ± 42 degrees from cos⁻¹(1.35 $\mu_{\rm B}$ $(1.82 \mu_{\rm B})$. In presentation, we will show the process how we fitted it and explain the result in detail.

This work was supported by The Canon Foundation.

- [1] A. S. Núñez et al., Phys. Rev. B 73, 214426 (2006).
- [2] T. Jungwirth et al., Nature Nanotechnology., 11, 231 (2016).
- [3] G. Nagashima et al., JSAP Spring.65, 17P-p10-17 (2018).
- [4] Y. Zhong et al., JSAP Spring 66, 9p-PB1-30 (2019.)

Fig. 1 (a) M-H curve, (b) schematic magnetization images in field of -27.8 Oe, 29 Oe and 1000 Oe.

交番磁気力顕微鏡を用いた直流磁場と交流磁場の 交差エネルギー項の検出による磁気記録ヘッドの局所磁化計測

P. Dubey, P. Kumar, 園部 博, 齊藤 準 (秋田大)

Local magnetization measurement of magnetic recording head by detecting energy cross term of DC and AC magnetic field by alternating magnetic force microscopy

P. Dubey, P. Kumar, H. Sonobe, H. Saito

(Akita Univ.)

はじめに 垂直磁気記録ヘッドでは記録磁場の高強度・高収束化が図られており、磁気ヘッドの更なる性能 向上にはその微視的な磁気特性を把握することが重要となる.筆者らは、磁気力顕微鏡の分野で試料表面近 傍の磁場の計測を可能にすることで空間分解能を大幅に向上させた交番磁気力顕微鏡 (Alternating Magnetic Force Microscopy; A-MFM)を開発し、さらに高磁化率の Co-GdO_x 系超常磁性探針を開発することで、磁気ヘッ ドから発生する交流磁場に対してその2 乗値に対応する磁場エネルギー計測を可能にし、さらなる空間分解 能向上を実現している¹⁻²⁾.本研究では、磁気ヘッドに直流磁場を重畳させた交流磁場を発生させて、直流磁 場と交流磁場との交差エネルギー項を解析することで磁気記録ヘッドの局所的な磁化測定を試みた.

方法 Co-GdO_x超常磁性探針(磁性膜厚 100 nm)を用いて磁気ヘッドの A-MFM 観察を行った.超常磁性探 針には磁気ヘッドからの交流磁場 $H\cos(\omega t)$ による交流磁化 $m^{ip} = \chi H\cos(\omega t)$ が発生するので探針の磁気力 は $\chi(\partial^2 H^2/\partial z^2)\cos^2(\omega t) \propto \cos(2\omega t)$ となり,磁場の2乗に対応する磁場エネルギー信号(周波数2 ω)を検出 することで交流磁場のエネルギーを画像化できる.ここで直流バイアスした電流 $I = I_{dc} + I_{ac}^0\cos(\omega t)$ を磁気 ヘッドに印加した場合,磁気ヘッド面に垂直方向の磁化 $M_{\perp} = M_0\sin\theta$ (θ はヘッド磁化のヘッド面からの立 上り角度)は、 $I_{dc} \ge I_{ac}$ による直流磁場および交流磁場により、 $M_{\perp} = M_s\sin(\theta + \Delta\theta\sin(\omega t))$ で周期的に変化 する.ここで交流磁場が直流磁場に対して小さい場合($\Delta \theta << \theta$)には、

 $M_{\perp} \cong M_{s}(\sin\theta + \Delta\theta\cos\theta\sin(\omega t))$ となる. このとき磁気ヘッド面近傍で は M_{\perp} によりヘッド面に垂直方向のヘッド磁場 $H_{z} = H_{z}^{dc} + H_{z}^{ac}$ が発 生する. ここで H_{z}^{2} において H_{z}^{dc} と H_{z}^{ac} の交差磁場エネルギー項が, $H_{z}^{dc}H_{z}^{ac} \cong \Delta\theta M_{s}^{2}\sin\theta\cos\theta\sin(\omega t) \propto \sin 2\theta$ となることに着目すると, 交差エネルギー項(周波数 ω)の信号強度 $S(\omega)$ は $\sin 2\theta$ に比例するこ とになる. そこで I_{ac}^{0} を固定して $S(\omega)$ の I_{dc} 依存性を解析することで磁 気ヘッドの局所的な磁化計測を行った.

結果 図 1(a)に $I_{dc} = 3 \text{ mA}$ での磁気ヘッドの交流磁場エネルギー像 とその中心部での直流磁場と交流磁場の交差エネルギー項 $S(\omega)$ (最大 値を 1 で規格化) の I_{dc} 依存性を示す. $S(\omega)$ は I_{dc} の増加に伴い急激 に増加し, $I_{dc} = 3 \text{ mA}$ 付近で最大値をとった後に徐々に減少すること がわかる. 図 1(b)に $S(\omega)$ が最大となるときの磁化の立上り角度 θ を 45°として, $S(\omega)$ が sin 2 θ に従うとして求めた θ を用いて, ヘッド面 に垂直方向の磁化曲線 (ヘッド磁化の飽和値で規格化) $M_{\perp}/M_{s} = \sin \theta$ を示す. 磁化は I_{dc} の増加に伴い急激に増加しその後,飽和に近づいて いくことがわかる. 講演ではこの解析の詳細について述べる.

<u>謝辞</u> 磁気記録ヘッドの磁場エネルギーイメージングに関する議論に 対して、(㈱日立ハイテクファインシステムズ様に感謝いたします.

参考文献 1) Kumar et al., Appl. Phys. Lett., 111, 183105 (2017),

2) P. Kumar et al., J. Appl. Phys., 123, 214503 (2018)

Fig. 1 (a) I_{dc} dependence of normalized $S(\omega)$, (b) I_{dc} dependence of normalized M_{\perp} .

交番磁気力顕微鏡を用いたパーマロイ・パターンド薄膜の 磁壁移動の動的観察

大阪 飛翔¹, Jong-Ching Wu², 齊藤 準¹ (秋田大学, National Changhua University of Education) Dynamic observation of domain wall movement of patterned permalloy thin films by alternating magnetic force microscopy T. Osaka¹, J. C. Wu², H. Saito¹ (¹Akita Univ., ²National Changhua University of Education)

はじめに 磁性材料の性能向上には磁区構造を観察し制御することが重要となる。近年,ソフト磁性薄膜で は使用する磁気デバイスの微細化・高周波化により,磁区観察には高い空間分解能および時間分解能が求め られている。ここで直流磁場を検出する従来の磁気力顕微鏡(MFM)は,強磁性探針から発生する漏洩磁場に よりソフト磁性薄膜の磁壁位置を乱すので磁区観察に難がある。そこで本研究ではソフト磁性薄膜の磁区観 察を MFM で実現することを目的として,研究グループが開発した交流磁場を検出できる交番磁気力顕微鏡¹⁾ (A-MFM)と残留磁化がない超常磁性探針を用いてパーマロイ・パターンド薄膜の磁区観察を試みた結果を報 告する。

<u>実験方法</u> 熱酸化 Si 基板上に作製したパーマロイ・パターンド薄膜 (Ta キャップ層 2 nm) について, MFM 観察,A-MFM 観察を大気中で行った。A-MFM 観察ではフェライトコアを試料ステージ直下に配置し, 膜面垂 直方向に交流磁場 ($H_z^{ac} = H_{z0}^{ac} \cos(\omega t)$; $H_{z0}^{ac} = 0 \sim 250$ Oe, $\omega/2\pi = 89$ Hz)を印加した。MFM 観察には市販の CoCrPt 探針を, A-MFM 観察には自作した Co-GdO_x 系超常磁性探針を用いた。観察条件として, 交流磁場強 度, 探針試料間距離, 探針走査方向を種々変化させた。

実験結果 Fig.1 に一例として 4×4 µm 角のパーマロイ・パターンド薄膜の MFM 像および A-MFM 像を示す。

Fig.1(a)の MFM 像では,90°磁壁からなる還流磁区が観 察されるが,磁壁は曲線状であり探針磁場の影響による 湾曲が懸念される。図(b)~(d)の A-MFM 像では,90°磁 壁の移動が最大位置として観察され,磁壁の移動は磁壁 の湾曲なく起こり,移動幅は交流磁場の増加に伴い増加 した。ここでフェライトコアからの交流磁場は試料面に 概ね垂直であるが,わずかに残る弱い図中の上下方向の 面内磁場により磁壁が移動しているものと推察される。

Fig.2 (a), (b)に磁壁の最大移動位置の模式図を示す。 A-MFM像の像コントラストのシミュレーションによる 解析により磁壁の最大移動位置は一方で暗く,他方で明 るいことがわかった。この結果から磁壁は図の左右方向 に移動していることがわかった。Fig.2 (a), (b)の紫色の 点は磁壁が交流磁場を印加しても移動せずに拘束され ており,磁壁のピニングポイントと推察される。本手法 はソフト磁性薄膜の磁壁を動的に観察するので,従来の 静的観察と比較して,磁壁位置を少ない画素数で検出で

Fig.1 MFM image of permalloy patterned thin film (a) and A-MFM image (b)-(d) {(a) $H_{ac0} = 0$ Oe, (b) $H_{ac0} = 50$ Oe, (c) $H_{ac0} = 100$ Oe, (d) $H_{ac0} = 250$ Oe }.

Fig.2 Schematic figure of domain wall movement. (a) Maximum movement position on the right side of the domain wall and (b) maximum movement position on the left side of the domain wall.

き,その後に倍率を上げて観察することが容易である。また,交流磁場による磁壁の移動距離を一度の観察 で測定することができ,磁壁のピニングポイントの評価も可能であることから,ソフト磁性薄膜の磁区構造 や磁壁移動の評価に有用と考えている。講演では本手法の詳細について報告する。

<u>参考文献</u> 1) W. Lu, H. Saito et al., Appl. Phys. Lett., 96, 143104 (2010)

交番磁気力顕微鏡を用いた永久磁石の3次元磁場計測 - 探針伝達関数に基づいた計測磁場方向の変換 --

和田 真羽, Zhao Yue, 松村 透, 齊藤 準 秋田大学

Three-dimensional magnetic field measurement of permanent magnet by alternating magnetic force microscopy: Conversion of measuring magnetic field direction based on MFM tip transfer function

S. Wada, Y. Zhao, T. Matsumura, H. Saito

(Akita Univ.)

<u>はじめに</u>

我々は磁気力顕微鏡(MFM)において,非共振の磁気力が探針振動に誘起する周波数変調現象を利用して, 試料面近傍の磁気力を高感度・高空間分解能で計測できる交番磁気力顕微鏡(A-MFM)を開発し,さらに超 常磁性探針を用いることで計測磁場方向の精度の高い磁気イメージング手法を実現し,表面凹凸の大きな永 久磁石においても試料ホルダーに垂直な磁場成分のみを計測することで,明瞭な磁区構造の観察に成功して いる¹⁾.本研究ではこの高い計測磁場方向精度を活かして,探針伝達関数²⁾による計測磁場方向の変換処理を 検討した結果,計測磁場方向を任意に設定することで3次元磁場解析が可能になったので報告する.

<u>方法</u>

MFM が検出する磁気力勾配信号は、 $\partial F_z/\partial z = m_x (\partial^2 H_x/\partial z^2) + m_y (\partial^2 H_y/\partial z^2) + m_z (\partial^2 H_z/\partial z^2)$ で表される. ここで (m_x, m_y, m_z) は直交座標系での探針磁化成分であり、z方向を試料面に垂直方向とする.本研究では、探針伝達関数を用いた計測磁場方向の変換用の測定データとして、Co-GdOx 超常磁性探針を用いた A-MFM 観察により得た永久磁石試料の垂直磁場勾配信号 $\partial F_z/\partial z = m_z (\partial^2 H_z/\partial z^2)$ を用いた.計測磁場方向の変換は自作した信号処理プログラムを用いて行い、空間スペクトル上での空間周波数フィルター処理後、フーリエ逆変換により磁気像に戻すことで所望の計測磁場方向の A-MFM 像を得た.

<u>結果</u>

図1に表面が平滑な NdFeB 焼結磁石を A-MFM 観察して得た探針磁化方向が試料面に 垂直な m_z の場合の垂直磁場勾配像 $m_z(\partial^2 H_z/\partial z^2)$ [(a)] および信号変換により 求めた探針磁化を試料面に平行方向の m_x および m_y とした場合の面内磁場勾配像 $m_x(\partial^2 H_x/\partial z^2)$ [(b)], $m_y(\partial^2 H_y/\partial z^2)$ [(c)]を示す.

図に見るように,計測磁場方向を変換した 面内磁場像では探針磁化方向に垂直方向の 磁場成分を検出できないので,概ね探針磁化 方向に沿った像コントラストが得られてい ることがわかる.所望の計測磁場方向の像 は,探針磁化(*m*_x, *m*_x, *m*_x)が極座標系では

0[mV] +

Fig.1 Measured $(\partial^2 H_z / \partial z^2)$ image [(a)], signal transformed $(\partial^2 H_x / \partial z^2)$ image [(b)] and signal transformed $(\partial^2 H_{y} / \partial z^2)$ image [(c)] of NdFeB sintered magnet.

 $(m_0 \sin \theta \cos \phi, m_0 \sin \theta \sin \phi, m_0 \cos \theta)$ で表されるので、 $\theta \ge \phi \ge \infty$ 化させて探針磁化成分の重み付けを変える ことで得ることができる. さらに磁場勾配像の各画素で探針磁化方向を変化させて磁場勾配信号が最大とな る方向を求めることで、磁場方向の可視化も可能になる.発表時にはこれらの詳細について述べる予定であ る.本研究で用いた NdFeB 磁石は日立金属(株)様からご提供いただきました.

参考文献

H. Saito et al., J. Magn. Magn. Mater., 191 (1999) 153
Y. Cao, H. Saito et al., J. Appl. Phys., 123 (2018) 224503

Co-GdOx 超常磁性 MFM 探針の高周波磁場応答性の Xバンド・導波管スロットアンテナを用いた評価

上村 拓, 園部 博, 松村 透, 伊藤 桂一, 齊藤 準 秋田大, 秋田高専

Evaluation of high frequency magnetic field response for Co-GdO_x superparamagnetic MFM tip by X-band waveguide slot antenna

T. Kamimura, H. Sonobe, T. Matsumura, K. Ito, H. Saito

(Akita Univ., National Institute of Technology, Akita College)

はじめに 磁気力顕微鏡(MFM)は様々な磁性材料・磁気デバイスの磁区観察に広く用いられており,近年,空間分解能や機能性の向上により計測対象が拡大している.我々は最近,磁気ヒステリシスがなく保磁力ゼロの Co-GdO_x系高磁化率・超常磁性探針を開発し,磁気記録ヘッドから発生する磁場の高分解能計測を実現している.本研究では,磁気力顕微鏡で高周波磁場計測が可能になれば更なる用途拡大がマイクロ波アシスト記録等で期待できると考え,高い強磁性共鳴周波数が予測される超常磁性探針について,高周波磁化率の評価を目的として X バンドの導波管スロットアンテナを用いてその高周波磁場応答性を検討した.

方法 自作した X バンドの導波管スロットアンテナを用いて, Co-GdO_x 超常磁性探針を含む種々の探針を MFM に装着して,振幅変調したマイクロ波を印加した。ここで超常磁性探針の磁化がマイクロ波磁場に追従 する場合,マイクロ波磁場を H,探針磁化を m^{ip} とし,超常磁性探針の磁化率を χ とすると,

 $H = H_0(1 + \alpha \cos(\omega_m t))\cos(\omega_c t) = H_0\cos(\omega_c t) + (\alpha H_0/2)\cos((\omega_c - \omega_m)t) + (\alpha H_0/2)\cos((\omega_c + \omega_m)t)$

 $m^{ip} = \chi H_0 (1 + \alpha \cos(\omega_m t)) \cos(\omega_c t) = \chi H_0 \cos(\omega_c t) + (\alpha \chi H_0 / 2) \cos((\omega_c - \omega_m)t) + (\alpha \chi H_0 / 2) \cos((\omega_c + \omega_m)t)$ より,探針の磁気力 F_z^{ip} に, $F_z^{ip} = \alpha \chi (\partial H_0^2 / \partial z) \cos(\omega_m t) + (\alpha^2 \chi / 2) (\partial H_0^2 / \partial z) \cos(2\omega_m t) + \cdots$ で表される低周波の 交番磁気力が発生する.この交番磁気力は探針振動の周波数変調現象を引き起こすので交番磁気力顕微鏡を 用いることで画像化できる.本研究では探針振動の周波数変調を計測し探針の高周波磁場応答性を評価した.

結果 図1に、MFM 内の導波管スロットアンテナ上 に設置した(a)ガラス基板, (b) Co-GdO_x超常磁性薄膜 (膜厚 100 nm)を、Co-GdO_x超常磁性探針(膜厚 100 nm) を用いて走査したときの探針振動スペクトルの一例 を示す.マイクロ波のキャリア周波数は11 GHz,振 幅変調周波数は89 Hz,振幅変調率は90%である.探 針は共振周波数 ω_d 近傍で加振した。(a),(b)とも探針の 加振スペクトル $S(\omega_d)$ の近傍に、矢印の周波数変調に よる1次側帯波スペクトル $S(\omega_d \pm \omega_m)$ が観察され、超 常磁性薄膜を設置することで、 $S(\omega_d) \geq S(\omega_d \pm \omega_m)$ の

電力比 $S(\omega_d)/S(\omega_d \pm \omega_m)$ が基板のみの場合と比較して 3.8dB 増加した. 側帯波は探針が導電性であればマイクロ波電場でも同様に発生するので,側帯波の起因を探るため,非磁性の Au 探針,ソフト磁性の FeCoB 非晶質探針を加えて測定した電力比 $S(\omega_d)/S(\omega_d \pm \omega_m)$ を表1に示す.表に見るように,ガラス基板と比較して超常磁性薄膜の場合に電力比が大きく増加するのは,超常磁性探針のみであることから,超常磁性薄膜がマイクロ波磁場により磁化することで薄膜から発生するマイクロ波磁場も合わせて超常磁性探針が検出しており,Co-GdO_x 超常磁性探針の比透磁率を電力比の増加率から見積もると

Table 1 Power ratio (dB) between the oscillation spectrum and the first side band spectra of frequency modulated tip oscillation on glass substrate and Co-GdO_x superparamagnetic film by various tips.

Tip Sample	Au tip	FeCoB tip	Co-GdOx tip
Glass substrate(A)	80.4	79.5	83.2
Co-GdOx Superpara magnetic film(B)	80.3	84.9	79.4
A-B	+0.1	-5.5	+3.8

3弱であった.講演では、マイクロ波周波数を変化させた結果も合わせて報告する予定である.

ピークピーク電圧検出型高性能 MI センサによる脳磁場の計測

馬 家駒、内山 剛

(名古屋大学)

Development of Peak to Peak Voltage Detector Type MI Gradiometer for Magnetocardiography J. Ma, T. Uchiyama

(Graduate School of Engineering, Nagoya University)

<u>はじめに</u>

MI センサはアモルファスワイヤの磁気インピーダンス(MI)効果を利用した小型で高感度な磁気センサであ り、色々な領域に、例えば、電子コンパス、ITS、非破壊検査と生体磁気計測などへの応用が、期待されてい る。生体磁気などの微小な磁気信号を計測するため、pT レベルの磁気分解能が必要と考えられる。本研究で は、センサシステム感度の向上とノイズの減少を目的として、高感度、低ノイズ化のピークピーク電圧検出 型高性能 MI センサを開発し、脳磁場など生体磁気計測を行った。

ピークピーク型 MI センサ

従来型と比べて、新しいセンサシステムはシステムの動作方 法を改善し、ワイヤへのパルス電流とサンプリングスイッチ パルスの形を調整した。従来型は、ピーク値と基準電位両方 を取って、その差を出力する。ピークピーク型 MI センサは、 発振回路から方形波電圧を生成し、微分回路と遅延回路によ り、二つのタイミングがずれたスイッチパルスを生成する。 センサヘッドのコイル波形には通電パルス電流の立ち上がり と立下りに対応した二つのピークがある。アナログスイッチ を使って、波形の最大値と最小値の差を出力する。短い時間 で時間差分計測により、低周波ノイズ、基準電位の変動や通 電周期の揺らぎによる影響が抑制できる。従来型より、新し いシステムの感度は約1.4倍向上を達成し、良好な線形性が 得られ、ヒステリシスは、ほとんど見られない。Fig. 1 は出 カノイズの磁界スペクトル密度を示す。ノイズレベルは、1Hz から 100Hz のバンド幅 1 pT 程度(60Hz 除く)である。

脳磁場計測

P300 は誘発脳波の中でも認知や判断と関連があり、誘発脳波 の中では比較的振幅が大きく、odd-ball 課題などの単純な課 題設定で誘発することが可能である。P300 は、刺激の発生後 に 250~500msの潜時を有する正の偏向である。P300 では同 一の被験者においても与えられる判別課題の難易度が高くな るとピーク潜時の遅延が報告されているため、今回の実験は、 標準と標的刺激の直径の比を 10:5、10:6、10:7、10:8 と変え てそれぞれ計測を行った。Fig. 2 は被験者 1 から得られた結果 である。実線は標的刺激に対する波形。点線は標準刺激に対 する波形。標的刺激に対する波形には、300m s から 420m s の間で、陽性の P300 ピークが確認できた。標準の方、P300 信 号はほとんど誘発されなかった。判別課題の難易度によって、 P300 成分の潜時は、標準と標的刺激の直径の比によって増加 することを確認できた。

Fig. 1. The magnetic noise spectral density of Pk-pk VD-type MI sensor system comparing with the environment magnetic noise spectral density

Fig. 2. Averaged P300 waveforms evoked by target and standard stimuli in 4 kinds of diameter ratio task conditions

1) J. Ma, and T. Uchiyama, IEEE TRANSACTIONS ON MAGNETICS, VOL. 53, NO. 11, 4003404, NOVEMBER

適応フィルタを前処理とした ICA による低 SNR 心磁図のノイズ除去法

三浦克哉、岩井守生、安倍正人、藤岡豊太、小林宏一郎 (岩手大学)

Noise Reduction Method for Low SNR Magnetocardiogram by ICA with Adaptive Filter Preprocessing K. Miura, M. Iwai, M. Abe, T. Fujioka, K. Kobayashi (Iwate University)

はじめに

心磁図は、心疾患の診断に有効であり、近年臨床研究において注目されている。しかし、心磁図は環境磁 気ノイズに比べて非常に小さいため、ノイズ除去なしに心臓活動を正確に評価することは困難である。その ため現在多くの場合、独立成分分析(Independent Component Analysis:ICA)¹⁾を用いたノイズ除去が行われてい るが、心磁界成分に比べて磁気ノイズが非常に大きい場合、信号分離の妨げとなりノイズ除去が困難になる。 そこで本研究では、適応フィルタ²⁾を用いて定常ノイズを除去したデータに対し ICA を行うことで、低 SNR 下における心磁図のノイズ除去精度の向上を目指しシミュレーションによる検討を行った。

提案方法

シミュレーションでは、磁気シールド内で測定した心磁図に対し加算平均を行い十分にノイズを落とした 信号を理想信号、環境磁気を測定したものをノイズデータとして、これらのデータを任意の SNR となるよ うに混合して用いた。提案方法は、任意の周波数成分 f_1 または f_n (環境磁気データに多く含まれる 50Hz 成 分、およびその高調波)の正弦波信号を参照信号としてフィルタ入力に用い、出力信号に存在する f_1 または f_n の正弦波信号のみを推定する。適応フィルタにより推定された f_1 または f_n の正弦波信号をシミュレーショ ンデータから減算することによって、特定の周波数成分のみを除去する方法である。

シミュレーション結果

本研究ではシミュレーションによりノイズ除去精度を確認した。Fig.1 に SNR-30dB のシミュレーションデ ータを用いた場合のシミュレーション結果を示す。Fig.1(a)に-30dB のシミュレーションデータの波形を示し、 (b)に提案方法による前処理を行い、ICA によるノイズ除去後の波形を示す。Table1 はシミュレーションデー タと理想信号との相関および SNR を測定した結果である。シミュレーションの結果、提案手法は約 30dB の 雑音下で、前処理を加えていないデータ、帯域通過フィルタ(BPF)・帯域除去フィルタ(BEF)を前処理に使用 したデータと比較して、より理想信号に近いデータを再現できていることが分かった。(ノイズ除去の結果、 理想信号との相関は 0.93、SNR は 21.22dB であった)。

Table1 Correlation and SNR at -30dB simulation data

	相関	SNR[dB]
ICA	0.32	17.11
BPF+BEF+ICA	0.90	22.30
適応フィルタ+ICA	0.93	21.22

(a) Simulation data
(b) Signal processed data
Fig.1 Waveforms at -30dB simulation data.

- 1) [詳解]独立成分分析 信号処理の新しい世界(著者: Aapo Hyvärinen, Juha Karhunen, Erikki Oja)
- 2) 藤岡豊太, 永田仁史, 安倍正人, 電子情報通信学会論文誌 A, Vol. J92-A No.2 pp.71-83, 2009

DPM 制御を用いたアクティブ磁気シールドの

シミュレーションによる検討

山﨑皓正、岩井守生、Madan M. Gupta*、Francis M. Bui*、小林宏一郎 (岩手大学、*サスカチュワン大学)

Investigation by Simulation of Active Magnetic Shield with DPM Controller H. Yamazaki, M. Iwai, Madan M. Gupta*, Francis M. Bui*, K. Kobayashi (Iwate University, *University of Saskatchewan)

<u>はじめに</u>

微弱な生体磁気信号の計測を行う際に必要不可欠である磁気シールドの一種にアクティブ磁気シー ルド(AMS)がある。AMS は従来の磁気シールドルームに比べ、安価かつ軽量などのメリットがある。 一般的なシステムに用いられている PID 制御では、作動中に制御パラメータが固定させているため、 応答性と安定性がトレードオフの関係である。そこで、本研究では AMS の新たな制御方法として、 DPM(Dynamic Pole Motion)制御¹⁾²⁾、I-DPM(Integral-DPM)制御を用いたシミュレーションよる磁気シー ルド特性の検討を行った。

提案方法

提案方法である DPM 制御は、比例要素、微分要素をフィードバック補償として用い、それぞれの要 素におけるパラメータを、制御器に入力される偏差によって変化させるものである。本研究で用いる AMS の伝達関数を 2 次遅れ系のシステムとして推定し、DPM 制御ブロックも含めたシステム全体の閉 ループ伝達関数の特性方程式から、各パラメータの関数を決定した。また、定常偏差を減少させるため に DPM 制御に I-PD 制御と同様の方法で積分要素を取り入れた I-DPM 制御も重ねて提案する。Fig.1 に I-DPM 制御のブロック線図を示す。また、本図中点線部で囲まれた部分が DPM 制御ブロックである。 実験結果

本研究では、PID 制御、DPM 制御、I-DPM 制御におけるステップ信号の外乱を入力した場合のシステム出力特性をシミュレーションした。この時の出力波形を Fig.2 に示す。シミュレーション結果より、 DPM 制御では 15.6 %の定常偏差が残り、目標値の 0 に収束しなかった。一方、積分要素を取り入れた I-DPM 制御では、定常偏差が 0 となった。また、PID 制御で整定時間が 1.3 ms、行き過ぎ量が 24.4 %であるのに対し、I-DPM 制御では整定時間が 0.3 ms、行き過ぎ量が 1.58 %となり PID 制御よりも応答性と 安定性が共に向上した結果となった。

Fig.1 AMS's block diagram

Fig.2 AMS's simulation output at the time of inputting step signal

- 1) M. M. Gupta, et al, The 28th North American Fuzzy Information Processing Society Annual Conference, 2009.
- 2) M. M. Gupta, et al, 2010 International Conference on Industrial Electronics, Control and Robotics.

体内インプラントへの無線給電における Wiegand ワイヤの発電効率

和口修平、川添駿平、酒井貴文、山田努、竹村泰司 (横浜国立大学)

Wireless power transmission to implantable medical devices using Wiegand wire Shuhei Waguchi, Shumpei Kawazoe, Takafumi Sakai, Tsutomu Yamada, Yasushi Takemura (Yokohama National University)

はじめに

現在、人体内インプラントやマイクロロボットへ電磁界を用いて給電・治療を行う研究が進められている。 その際の動作周波数は人体へ刺激・熱作用を引き起こさせる可能性があるため、低周波数帯で給電を行うこ とが望ましい。そこで、本研究では Wiegand ワイヤ(FeCoV ワイヤ)を受電コイルのコアに用いた無線給電を 提案している¹⁾。

熱ひねり加工を施した Wiegand ワイヤは、高速な磁壁移動によって大バルクハウゼンジャンプと呼ばれる 急激な磁化反転を生じ、この周りに検出コイルを設置することでこの磁化反転からパルス電圧が得られる²³。

このWiegand ワイヤを用いると、MnZn フェライトよりも低周波数帯で大きな電力を得られることが報告 されている¹⁾。その一方で、Wiegand ワイヤは保磁力を示すためにヒステリシス損失が生じる。この損失を定 量化することは、回路解析において重要だと言える。本講演では、直流・交流磁化測定からヒステリシス損 失の計算を行い、その損失と発電電力の効率および MnZn フェライトとの発電電力の差を比較考察した結果 を報告する。

実験方法

Wiegand ワイヤに振動試料型磁力計(VSM)を用い て直流磁化測定を行った。ヒステリシス損失は磁化 曲線のループ面積と動作周波数の積で得られるため、 磁化曲線からループ面積を導出し、ヒステリシス損 失の算定を行った。

次に、Fig.1 に示すように、ワイヤの周りに給電 用検出コイルを設置し、さらにその外側にはワイヤ の中央部が励磁されるように励磁コイルを置き、正 弦波交流磁界で励磁させた。検出コイルの両端には ダイオードブリッジを接続し、正負双方のパルス出 力を整流させ、パルス出力による電力と交流磁界の 誘導による電力の計算を行った。

実験結果

Fig. 2 に直流磁化曲線を示す。結果より、印加磁 界の増加に従い、磁化の増加とループ面積の増加を 確認した。また、そのループ面積は次第に飽和して いくことも分かった。

ヒステリシス損失の算定や、発電効率、MnZnフ ェライトとの発電電力の差に関しては当日に発表す る。

- 1) Takahashi et al., J. Magn Soc. Jpn., 42, 49, 2018.
- 2) Wiegand and Velinsky, U.S. Patent 3, 820, 090, 1974.
- 3) Takemura et al., IEEE Trans. Magn., 53, 4002706, 2017.

Fig. 1 Configuration of measurement.

Fig. 2 DC magnetization curve of Wiegand wire.

交流磁界によるヒトがん細胞の膜電位への影響評価

林誠也¹,柿川真紀子¹,山田外史² (¹金沢大学,²公立小松大学) Effect of ELE Magnetic Field on membrane potential of human cancer cells S.Hayashi¹, M.Kakikawa¹, S.Yamada² (¹Kanazawa University, ²Komatsu University)

<u>はじめに</u>

これまでに、がん細胞に交流磁界を曝露することで抗がん剤の作用が増強することが明らかとなっている。 このメカニズムは解明されていないが、他のグループの研究によると、磁界によりがん細胞の細胞膜に含ま れるタンパク質の構造が変化することが報告されている。また、外部刺激により細胞膜に存在する膜電位と 膜タンパク質の構造が共に変化すると言われている。これらより磁界が細胞膜に何らかの影響を与え、薬剤 作用が増強する可能性が考えられる。そこで、本研究では膜電位に焦点を当て、交流磁界がヒトがん細胞の 膜電位に与える影響評価を目的とした。

なお、ヒトがん細胞には薬剤の添加により耐性を獲得した細胞が存在しており、この耐性を持ったがん細胞はより多くの薬剤を細胞膜外へ吐き出すため通常のがん細胞とは細胞膜の構造が異なっている。そこで本実験では、ヒト肺がん細胞株A549と多剤耐性細胞であるヒト子宮肉腫株 MES-SA/Dx5を用いた。MES-SA/Dx5 は抗がん剤 Doxorubicin に対し100倍の耐性率を持ち、また複数の薬剤に対しても耐性を持つがん細胞である。 これらのヒトがん細胞を比較することにより、異なる構造の細胞膜に対して交流磁界が与える影響に違いが あるのかを調査した。

細胞膜電位への交流磁界影響の評価方法

交流磁界条件は周波数 60 Hz,磁束密度 50 mT±10%で行った。先行研究において A549 と MES-SA/Dx5 で 共に作用増強が確認された薬剤 Cisplatin, Doxorubicin, Mitomycin C を使用した。膜電位の測定には、膜電位感 受性色素 DiBAC4(3)を用いた。DiBAC4(3)は外部刺激により細胞膜が脱分極すると細胞内に取り込まれ、細胞 膜内のタンパク質などと結合することで蛍光が大きくなり、逆に過分極すると蛍光が小さくなる色素である。 また、DiBAC4(3)は1 mV の膜電位変化に応じ、蛍光強度が1%変化する特性をもつ。この性質を利用し、膜 電位が変化する様子を蛍光強度の変化により測定した。

細胞膜電位への交流磁界影響評価の結果

ヒト肺がん細胞 A549 において,反応時間 2 min で約 2.5% の蛍光相対比の有意な減少,つまり約 2.5 mVの膜電位増加 が見られた(Fig.1)。一方,多剤耐性細胞であるヒト子宮肉腫 株 MES-SA/Dx5では,反応時間 10 min で約 2.5 mVの膜電 位増加が見られた。この結果から本実験での反応時間では, 肺がん細胞 A549 と子宮肉腫株 MES-SA/Dx5 共に交流磁界単 独によって膜電位が増加し,また A549 と MES-SA/Dx5の間 では交流磁界によって影響が表れる時間に違いがあること がわかった。

現在,細胞膜構造の違いによる膜電位の変化を比較する ため,MES-SA/Dx5 が耐性を持つ前のがん細胞であるヒト子 宮肉腫株 MES-SA においても実験を進めている。また,抗 がん剤の反応時に交流磁界を併用させることで膜電位に影 響が表れるのかを調査している。

(n=6, *p<0.05) Fig.1 Effect of MF alone on membrane potential of A549 cells

超伝導磁気分離による火力発電所給水中からのスケール除去

廣田 憲之¹, 岡田 秀彦¹, 三島史人², 西嶋茂宏², 秋山庸子³, 松浦英樹⁴, 難波正徳⁴, 関根智一⁵ (物材機構¹、福井工大²、阪大³、(株)四国総合研究所⁴、荏原工業洗浄⁵)

Application of superconducting magnetic separation for the removal of scales from boiler feed water in thermal power plants

N. Hirota¹, H. Okada¹, F. Mishima², S. Nishijima², Y. Akiyama³, H. Matsuura⁴, S. Namba⁴ and T. Sekine⁵ (NIMS¹, Fukui Univ. of Tech.², Osaka Univ.³, Shikoku Research Institute Inc.⁴, Ebara Industrial Cleaning Co. Ltd.⁵)

火力発電は主要な発電手段であるが、二酸化炭素の排出量が多い。このため、火力発電所において発電効 率を向上させれば、発電のための燃料消費量の低減につながり、ひいては、二酸化炭素の排出量の削減につ ながると期待される。火力発電所においては、ボイラーにおいて発生した高温の蒸気はタービン発電機を回 して発電を行ったのち、凝縮して水となり、配管を通じてボイラーに戻る。火力発電所給水配管には鉄系酸 化物スケールの付着が起こり、この酸化物層が熱交換効率を低下させる原因となっている。したがって、ス ケールの付着を低減できれば、二酸化炭素排出量の削減に寄与できると考えられる。スケールは主として酸 化鉄で構成される。鉄は給水配管中の比較的低温部分の壁面から溶出し、200℃以上の高温になる部分でマグ ネタイトとなって、給水配管壁面に付着する。マグネタイトはその磁気的性質を利用して容易に分離するこ とができる。そこで我々は火力発電所給水配管中のスケール除去に高勾配磁気分離技術を適用する方法を検 討している。高勾配磁気分離では強磁性ワイヤーを編んだ網を積層して構成されるフィルターマトリックス を超伝導磁石のボア中を通過する流路内に設置して使用する。マグネタイト粒子は磁化された強磁性ワイヤ 一表面に磁気力によって引き寄せられることで流体中から分離される。本研究プロジェクトでは、火力発電 所ボイラー給水系のどの部分に磁気分離システムを設置するのが適切か、最適なマトリックス構造、磁場条 件、運転条件や手順などについてシミュレーションと実験により検討を行なった。AVT タイプの火力発電所 の場合、温度 200℃、流量 400-500 m³/h、圧力 20 atm の高圧ドレインと呼ばれる場所が適切な設置場所と 考えられることがわかった。バッチ式の高温高圧実験、常温常圧大流量の循環式実験を通して、マトリック スに必要な条件を検討した。当日はこれらの検討結果の詳細を報告する。

謝辞

本研究の一部は国立研究開発法人 科学技術振興機構(JST) 先端的低炭素化技術開発(ALCA)のグラント番号 JPMJAL1304 を受けて実施したものである。

磁気マーカーのクラスタ形成を利用した 洗浄工程不要の免疫検査法の開発

秋吉一輝、五藤仁哉、吉田敬、笹山瑛由、圓福敬二、原美里* (九州大学、多摩川精機*)

Wash Free Detection of Biological Targets Utilizing Cluster Formation of Magnetic Markers K. Akiyoshi, J. Goto, T. Yoshida, T. Sasayama, K. Enpuku, M. Hara* (Kyushu University, Tamagawa Seiki*)

<u>はじめに</u>

免疫検査とは血液検査などの医療診断において、疾患由来の蛋白質や病原体などのバイオ物質(抗原)の 有無や量を測定する方法である。磁気マーカーを用いた免疫検査法では、ブラウン磁気緩和現象を用いるこ とにより、バイオ物質に結合した磁気マーカー(Bound markers)と未結合マーカー(Free markers)を磁気的 に識別できる。このため、従来の光学的手法で必要とされてきた B/F 分離のための洗浄工程を省いた迅速な 検査が可能となる。今回、磁気マーカーとバイオ物質の結合により磁気マーカーのクラスタを形成させる手 法を導入し、このクラスタを用いた洗浄工程不要の検査法を開発した。

<u>実験方法</u>

Fig.1に磁気的免疫検査法の原理を示す。本研究では、バイオ物 質として C-反応性蛋白質(CRP)を用いており、磁気マーカーは C6cc 抗体付き FG ビーズと C2 抗体付き FG ビーズ(多摩川精機) を用いた。CRP 及び2種類の磁気マーカーを溶液中で1時間反応 させることで、Fig.1に示すように、CRP を介して磁気マーカーが クラスタを形成する、これが結合マーカーとなる。なお、溶液中 には結合していない磁気マーカー(Free markers)も共存する。

粒子のブラウン緩和時間 τ_B は粒子の直径により決まり、動的光 散乱法により計測した結合マーカー(クラスタ)の直径は $d_{HB} > 1 \mu m$ であるため、緩和時間は $\tau_{BB} > 0.4 s$ となる。一方、未結合 マーカーの流体力学的直径は $d_{HF} = 160 nm$ であり、緩和時間は $\tau_{BF} = 1.6 ms$ となる。

この緩和時間の違いにより、 $f >> 1/\tau_{BB}$ となる周波数の交流磁 界を印加した場合には、結合マーカーからは磁気信号が発せら れず、未結合マーカーからのみ信号が発せられる。従って、B/F分離を磁気的に行うことが可能となる。実験では振幅 4 mT、周 波数 330Hz の励起磁界を印加し、検出コイルにより検出した第 三高調波 (f = 990 Hz)を測定信号とした。

<u>実験結果</u>

Fig. 2 に CRP の検出結果を示す。図の横軸は CRP の濃度 ϕ_{CRP} である。図の縦軸は第三高調波信号の減少率gを示す。ここで減少率gは、CRP がない状態の測定信号 $V_0(\phi_{CRP}=0)$ から各 CRP 濃度の測定信号 $V(\phi_{CRP})$ を引いた値を V_0 で割った値である。図 に示すように、減少率は CRP 濃度とともに増加し、両者には良 い相関が得られた。最小の検出限界は 0.1 ng/mL となった。こ の結果は、洗浄工程なしで CRP の検出が可能なことを示してお り、本手法の有効性が示された。

Fig. 1. Wash-free detection of biological targets using cluster formation of magnetic markers.

Fig. 2. Wash-free detection of CRP. Reduction of 3^{rd} harmonic signal is shown when concentration of CRP is changed from 0.1 to10 ng/mL.

スイッチ磁界に対する磁性ナノ粒子の応答性を利用した細菌検出

高橋隼之介*,トンタットロイ*,小野寺英彦**,沖田和彦**,薮上信*,**,横田琴音*,**,

古谷真衣子*, 金高弘恭*, 三浦由則***, 高橋英樹***

(*東北大学, **東北学院大学, ***ジーエヌエス有限会社)

Measurement of bacteria using magnetic beads by switching magnetic field.

S. Takahashi*, L. Tonthat*, H. Onodera**, K. Okita**, S. Yabukami***, K. Yokota***, M. Furuya*, H. Kanetaka*,

Y. Miura***, H. Takahashi***

(*Tohoku University, **Tohoku Gakuin University, ***JNS Co., Ltd.)

<u>1 はじめに</u> スイッチ磁界に対する磁気ビー ズの応答性から抗原抗体反応により培養したう蝕菌 等を検出した。

2 計測方法 Fig.1は試作システムの構成を示 したものである。本システムは容器、回転機構、磁 石および励磁コイル、磁気ビーズからの漏れ磁界を 検出する磁界センサ(ジーエヌエス製 MI センサ) から構成される。試料は永久磁石 (NdFeB 磁石,4mm ×4mm×1mm) で約 600 秒間着磁され、永久磁石を 取り除いて 54 回転する(回転速度は 100 degree/sec)。 励磁コイルにより周回毎にスイッチ磁界により磁性 ナノ粒子をスイッチし、段階的に磁界を増加させる。 コイルによる毎回の着磁時間は 10 秒~30 秒程度、 磁界強度は最大10mT程度とした。容器は周回して 磁界センサで磁性ナノ粒子の漏れ磁界を検出して、 細菌との結合の違いによりスイッチ磁界に対する磁 性ナノ粒子の応答性が異なることから細菌数を検出 する。

<u>3 計測結果</u> Fig. 2 は培養菌の検出結果を示したものである。Protein A が添加された磁性ナノ粒子 (Nanomag-D, 平均粒径 0.5 µmφ)と1次抗体 (Anti-S. mutans antibody あるいは Anti-P. gingivalis antibody) を結合させた後、う蝕菌 (S. mutans) あるいは歯周病菌 (P. gingivalis) と抗原抗体反応をさせた。細菌の濃度を変化させてスイッチ磁界に対して磁性ナノ 粒子が磁化反転する際の磁束密度を縦軸に表した。

S. mutans あるいは P. gingivalis の濃度が高くなるに 従って、磁性ナノ粒子の磁化反転に必要な磁束密度 が高くなることから、細菌濃度、細菌数が計測可能 であると考えられる。また細菌濃度については 10⁴ CFU/ml 程度までの検出が可能であり、実用化されて いる別評価方法に比較して同程度かより高感度であ ることがわかる²⁰。健常者および高齢者施設入居者 の口腔細菌を検出しており、学術講演会では報告予 定である。

<u>謝辞</u> 本研究の一部は JST COI TOHOKU プロジェク

トの研究成果である。本研究の一部は JST ASTEP の 成果である。

<u>参考文献</u> 1) W.F. Brown, J. Appl. Phys. 34, 1319 (1963). 2) 細菌カウンタカタログ(パナソニック).

Fig. 1 Schematic view of the sensor.

Fig. 2 Magnetic flux density when the magnetic nanoparticles are reversed as a function of density of bacteria.

MPI における未結合粒子と結合粒子の識別手法の開発

東大路、野口裕希、吉田敬、圓福敬二 (九州大学)

Development of the discrimination method of mobile and immobilized magnetic nanoparticles in MPI Oji Higashi, Yuki Noguchi, Takashi Yoshida, Keiji Enpuku

(Kyushu University)

1 はじめに

近年、磁気応用による医療診断技術が注目されており、その中の一つに磁気粒子イメージング(MPI)が挙げ られる。本研究では、MPIで用いられる磁気ナノ粒子 MS1 において、検査対象と結合した粒子を「固相サン プル」、未結合の粒子を「液相サンプル」として疑似的に再現し、それぞれの高調波信号特性の違いにより両 者の識別を行うことを目指した。

2 原理

2.1 高調波磁化特性

MPI で用いられる直流傾斜磁界に対する、高調波の信号特性を利用して識別を行う。液相サンプルと固相サ ンプルでは、磁気緩和に違いが生じるため、直流傾斜磁界に対する信号の減衰に差異が生じる。

本研究では、固相サンプルの磁化容易軸を交流励起磁界と同じ方向に揃え、また検出信号として第三,第五 高調波を用いることで、精度の高い状態識別を目指した。

2.2 画像再構成

第三、第五高調波の検出信号 v3rd と v5th から、液相及び固相サンプルの空間分布 clia と csol を再構成する手法 として、以下に示す NNLS(Nonnegative Least Squares)法を用いる。

$$\begin{pmatrix} v_{3rd} \\ v_{5th} \end{pmatrix} = \begin{bmatrix} A_{liq3rd} & A_{sol3rd} \\ A_{liq5th} & A_{sol5th} \end{bmatrix} \begin{bmatrix} c_{liq} \\ c_{sol} \end{bmatrix}$$
(1)
$$\begin{bmatrix} A_{liq3rd} & A_{sol3rd} \\ A_{liq5th} & A_{sol5th} \end{bmatrix} \begin{bmatrix} c_{liq} \\ c_{sol} \end{bmatrix} - \begin{bmatrix} v_{3rd} \\ v_{5th} \end{bmatrix} \|^2 + \lambda \left\| \begin{bmatrix} c_{liq} \\ c_{sol} \end{bmatrix} \right\|^2 \to min$$
(2)

ここで、Aliq3rd, Asol3rd は、液相・固相サンプルの第三高調波 PSF(Point Spread Function)、Aliq5th, Asol5th は、液相・ 固相サンプルの第五高調波 PSF である。

3 実験結果

サンプル容器のサイズは、直径6mm、深さ13mm の物を使用した。液相サンプルは MS1 を 10.8 μL に精製水 139.2 µL 加えて作成し、固相サンプルは MS1を10.8 µLにエポキシ樹脂180 mg混ぜ合わせ て作成した。

本研究では液相サンプルを(x,y)=(7 mm,0 mm)に 置き実験を行った。測定条件は交流励起磁界の振 幅 3.5 mT、周波数 3 kHz、直流傾斜磁界が x 軸方 向に1mT/mm、y軸方向に2mT/mmとした。

Fig. 1 MPI images for (a) mobile and (b) immobilized samples.

Fig1.に示すように、高調波信号特性を利用することで、状態識別が行えていることが分かる。固相サンプ ルと液相サンプルを同時に配置し、イメージングを行った結果についても報告する予定である。

参考文献

Yoshida, Takashi, et al. "Effect of alignment of easy axes on dynamic magnetization of immobilized magnetic 1) nanoparticles." Journal of Magnetism and Magnetic Materials 427 (2017): 162-167.

磁気センサアレイによる磁気ナノ粒子トモグラフィの開発

笹山 瑛由、吉田 敬 (九州大学)

Magnetic nanoparticle tomography using magnetic sensor array Teruyoshi Sasayama, Takashi Yoshida (Kyushu University)

1. はじめに

ナノメートルサイズの磁気ナノ粒子を高分子でコーティングし、その表面に検査試薬や薬剤を固定したも のは磁気マーカーと呼ばれる。その磁気マーカーを体内に注入し、磁気マーカーからの磁気信号を検出する ことにより、癌等の疾病領域を高感度・高分解能に画像化する磁気粒子イメージング(MPI)が医療診断にお いて注目されている。MPI は強い傾斜磁場を用いることで空間分解能が高くなるが、人体スケールで実現し ようとすると、その傾斜磁場を生成することが困難なことが課題なっている。

一方、心磁図や脳磁図は体内で自発的に生成された磁界を磁気センサアレイで計測する手法がある。これ らの特長として、時間分解能が高い他、磁気センサーを高密度に配置することにより空間分解能を高められ る。また、人体を覆うような傾斜磁場コイルは不要となる。そこで、本稿では、傾斜磁場コイルを用いず磁 気センサアレイを用いて磁気ナノ粒子の分布を可視化する手法(磁気ナノ粒子トモグラフィ)を提案する。

2. 方法

図1に開発している磁気ナノ粒子トモグラフィシステムを示す。1個の大きな励磁コイルの内側に16個の 小さな検出コイルを配置している。励磁電流の周波数は 5400 Hz とし、振幅は 1, 2, ..., 20 A と変化させて、 磁気ナノ粒子より得られる磁界データを増加させた。検出コイルの電圧を A/D コンバータで計測し、磁気ナ ノ粒子から生ずる第3高調波の磁界信号を高速フーリエ変換により取得した。磁気マーカーは、MPIの研究 でも広く用いられている Resovist (富士フィルム RI ファーマ製)を用い、それをグリセロールで固相化した サンプルを用いた。まず、サンプルを自動ステージで走査しシステムファンクションを生成した。次に、サ ンプルを複数配置して磁界計測を行い、その計測結果と事前に取得したシステムファンクションを用いて逆 問題を解き、サンプルの位置を推定した。なお、励磁コイルとサンプルとの距離は 30 mm とした。

3. 結果

図2に、2個サンプルを配置した時の、逆問題解析によるサンプル位置の推定結果を示す。図より、2個の サンプル位置を区別して推定できていることから、本提案手法が有効であることがわかる。

謝辞:本研究はJSPS 科研費(19K14996)および公益財団法人マツダ財団助成による。

Fig. 1 The arrangement of the coils.

Fig. 2 Estimated distribution of the magnetic nanoparticle concentration

振動磁場中における酸化鉄ナノ粒子分散液の磁気誘起直線二色性

諏訪雅頼、魚谷明良、塚原聡 (大阪大学)

Magnetic linear dichroism of iron oxide nanoparticle suspension under alternating magnetic field Masayori Suwa, Akira Uotani, Satoshi Tsukahara

(Osaka Univ.)

はじめに

振動磁場中における磁気ナノ粒子(Magnetic nanoparticle, MNP)の配向・回転運動は、磁気粒子イメージン グの精度やハイパーサーミアの発熱効率に影響を及ぼす。また、MNPの流体力学径の変化を利用したバイオ アッセイや、MNPをプローブとしたナノレオロジー測定など、MNPの回転を利用した新手法も考案されて いる。我々は以前の研究¹⁾で、振動磁場中で MNP分散液の吸光度を Faraday 配置で測定したところ、その時 間変化から MNPの配向・回転運動が観測できることを実証した。これは測定した MNPの磁化容易軸と光軸 が平行で、光の進行方向(即ち磁場の方向)に光軸が配向するためである。しかし、流体力学的に取り扱い が容易な球状の MNPを測定した場合、吸光度変化が非常に小さく解析が困難であった。そこで本研究では、 磁場と光を垂直とする Voigt 配置により磁気誘起直線二色性の直接測定を試みた。

実験方法

Fig.1 に磁気誘起直線二色性測定装置を示す。以前と同様に、LCR 回路の放電で得られる減衰振動磁場を利用した。回路内のキャパシタを交換することで、27 kHz~180 kHz の間で離散的に周波数を変えた。Voigt 配置に設定するためスプリット型の空芯コイル(ボア径 10 mm ¢)を作製した。MNP分散試料は光路長 3 mmの石英光学セルに入れ、コイル内に設置した。光源には波長 405 nmのレーザ光を用い、入射偏光角を磁場に対して 45°に調節した。ウォラストンプリズムで透過光を 0°と 90°の直線偏光に分離し、その差分をバランス検出器により測定した。得られたシグナルから、試料内の磁気誘起二色性による偏光角変化を見積もった。試料として、粒径 10 nm ~ 25 nm のマグネタイト MNP 分散液(Sigma-Aldrich)を測定した。

結果と考察

Fig.2 に減衰振動磁場印加に伴った直径 10 nm の MNP 分散液中の偏光角変化を示す。MNP はほぼ球 形で個々の MNP の二色性が小さいため、以前の吸 光度変化測定系では質の良い信号が得られなかっ たが、本研究では直線二色性の直接観測により高感 度化に成功し、明瞭な信号が観測できた。さらに、 偏光角変化から MNP 容易軸の平均角を見積もり、 MNP の配向・回転運動の粒径依存性を調査した。

Fig.1 The illustration of the experimental setup for magnetic linear dichroism measurement under oscillating magnetic field.

Fig.2 Typical waveform of polarizing angle change $\Delta \Theta$ in MNP suspension (a) under the damped oscillating magnetic field (b).

参考文献

1) M. Suwa, A. Uotani, S. Tsukahara, J. Appl. Phys. 125, 123901 (2019).

転移性骨腫瘍ハイパーサーミア用マグネタイト含有 生体活性骨セメントの発熱特性

○久保田萌¹,小川智之¹,斉藤伸¹,バラチャンドラン ジャヤデワン²,川下将一³ (1東北大学,2滋賀県立大学,3東京医科歯科大学)

Heat generation characteristics of bioactive bone cement containing magnetite for hyperthermia of metastatic bone tumor

OMoe Kubota¹, Tomoyuki Ogawa¹, Shin Saito¹, Balachandran Jeyadevan², Masakazu Kawashita³ (¹Tohoku University, ²University of Shiga Prefecture, ³Tokyo Medical and Dental University)

1. 研究背景

近年、がん罹患者数は増加の一途をたどっており、骨転移は多くのがん患者に認められる症状である[1]。 骨転移に対する主な治療法としては、外科的療法、放射線療法、化学療法などが挙げられるが、副作用など 身体への負担が大きいことが課題となっている。また、骨腫瘍は骨を破壊しながら増殖するため、強い痛み や圧迫骨折をもたらすことがある。痛みを軽減し、骨の強度を高める方法として、脆くなった骨(特に椎骨) の内部に骨セメントを充填する治療法(経皮的椎体形成術)がある。そこで我々は、経皮的椎体形成術にお いて骨セメントの充填と同時にがんの治療を行えば、より効果的な治療が実現できると考え、身体への負担 が少なく局所的な治療が可能な、磁性体を利用したハイパーサーミア(温熱療法)に注目した。本研究は、 骨セメントに高い生体親和性を有するチタニア(TiO2)及び、温熱種としてマグネタイト(Fe3O4)を含有 させることで、骨との親和性が高く、しかもがんの温熱治療が可能な骨セメントの創製を目的とする。

実験方法

セメント粉末として、ポリメチルメタクリレート (PMMA)、過酸 化ベンゾイル(開始剤)、Fe₃O₄粉末及びTiO₂粉末をTable 1の重量 比通りに乳鉢を用いて 10 分間混合した。また、セメント液として、 メタクリル酸メチル (MMA) 及び N,N-ジメチル-p-トルイジン (促 進剤)を用いた。開始剤はMMAの重量に対して4%、促進剤はMMA の重量に対して2%とした。その後、セメント粉末とセメント液を約 3分間、均一に混和した。作製した試料の磁気特性を振動試料型磁力 計により調べ、600 kHz, 40 Oe の交流磁場下における試料の発熱特性 を調べた。

Sample	Powder (wt %)			Liquid (wt %)			
-	TiO ₂	Fe_3O_4	PMMA	MMA			
Control	0	0	40	60			
T10M10	10	10	32	48			
T15M15	15	15	28	42			
T20M20	20	20	24	36			

25

30

24

22

36

33

T15M25

T15M30

15

15

Table 1 Composition of coment

3. 結果

各試料の飽和磁化(Ms)と保磁力(Hc)を Table 2 に、各試料に交流磁場を 10 分間印 加したときのセメント表面の温度変化を Fig. 1にそれぞれ示す。T15M25及びT15M30 は交流磁場の印加によって 42 ℃以上に到 達した。この温度は、温熱治療に有効な温度 といわれているため、本研究で作製した骨セ メントは、磁気ハイパーサーミアの温熱種と して機能する可能性が示唆された。

当日は、各セメントの磁気的性質と温度上昇との関連性や、骨結合 性の指標の一つである擬似体液中におけるアパタイト形成能評価の結 果についても報告する予定である。

参考文献

[1] 日本臨床腫瘍学会, 骨転移診療ガイドライン, 南江堂, pp.2-10 (2015)

Fig. 1 Change in temperature of samples placed under alternating magnetic field of 600 kHz, 40 Oe for 10 min.

of each sample

Sample

T10M10

T15M15

T20M20

T15M25

T15M30

Ms

[emu/g]

9.5

16.2

18.5

25.0

28.7

Hc

[Oe]

116.6

114.5

117.4

123.4

123.4

高周波磁化過程測定の高精度化と直流磁場重畳

小野寺礼尚1、黒岩拓也2*、柳原英人3、喜多英治1

(¹茨城高専、²筑波大学大学院(現シャープ)、³筑波大学)

Improvement of accuracy in a high frequency magnetization process measurement and superposition of a

static magnetic field

R. Onodera¹, T. Kuroiwa², H. Yanagihara² and E. Kita¹

(¹NIT Ibaraki College, ²Univ. of Tsukuba)

はじめに

磁性ナノ粒子の高周波磁場印加による発熱をがん治療に利用するハイパーサーミア技術では、発熱量はナ ノ粒子のヒステリシス損失に依存するため、その*M-H*ループを正確に評価することは重要である。また、こ の損失は磁気モーメントのブラン緩和およびネール緩和によって生じるが、*M-H*ループからそれぞれの緩和 機構の寄与を分離することはできない。直流磁場により粒子を配向させた上で交流磁化測定を実施すれば、 粒子の回転を抑制した上での*M-H*ループが得られると考えられるため、直流・交流の複合磁場下の磁気特性 評価は、ナノ粒子の発熱特性に対する緩和機構の寄与の実験的検討に資すると考えている。

以上のことから本研究では、ハイパーサーミア用磁性ナノ粒子の開発過程で要求される高精度な高周波磁 化測定装置および、印加方向を制御可能な直流磁場重畳装置の開発を目的としている。

装置構成および実験方法

本装置は、DC 磁場発生部とこれまでに報告した AC 磁化測定装置を 組み合わせた構成となっている。Fig. 1 に示すように、DC 磁場発生に は φ 50mm の磁極を有する電磁石を用い、この磁極間に AC 磁化測定よ うの AC 磁場発生コイルおよび、磁化・磁場検出コイルを設置している。 DC 磁場は磁極中心でおよそ 1 kOe の磁場発生が可能となっている。AC 磁場発生は磁場発生用空芯コイルとコンデンサからなる直列 LC 共振回 路と高周波電源(1 kW) で構成されており、20 k~1 MHz の範囲で高周 波磁場を発生させることができる¹⁾。

磁化測定の精度と周波数依存性を評価するために、標準試料とし て常磁性 Dy₂O₃ 粉末、YIG 3 mm 球、MnZn フェライトなど、磁気特 性が既知の試料を用いて周波数 60 k-200 kHz、AC 磁場振幅 600 Oe、 DC 磁場 500 Oe の範囲で測定精度の評価を行なった。

結果

Figure 2 に、磁極間に設置した AC 磁場発生コイルの電源出力一 定条件における、発生磁場の変化を示す。ここからわかるように、 AC 磁場コイル長 55 mm に対してギャップが 65 mm の磁極では磁 場の出力がおよそ 2/3 ほどに減少していることがわかる。これは DC コイルに通電していない条件でも、発生した AC 磁場に対して磁極 が応答しているためであると考えられる。また、この影響はギャッ プ 95 mm ではほぼないが、一方で DC 磁場強度は 560 Oe まで低下 してしまうことが明らかとなった。標準試料および磁性流体の測定 結果に関しては、当日報告する。

1) A. Seki, et al., J. Phys.: Conf. Ser., 521 (2014) 012014

Fig. 1 Schematic representation of the experimental setup.

Fig. 2 Detected magnetid field with wide and narrow gaps, and without a magnetic pole.

磁気分離したフェルカルボトランの SLP

石川真守¹, 竹内誠治¹, 史冠男¹, 大多哲史², 吉田敬³, 圓福敬二³, 加藤一郎⁴, 野原聡⁴, 山田努¹, 竹村泰司¹

(1横浜国立大学,2静岡大学,3九州大学,4名糖産業株式会社)

Specific loss power of magnetically fractionated Ferucarbotran

Mamoru Ishikawa¹, Seiji Takeuchi¹, Guannan Shi¹, Satoshi Ota², Takashi Yoshida³, Keiji Enpuku³,

Ichiro Kato⁴, Satoshi Nohara⁴, Tsutomu Yamada¹, Yasushi Takemura¹

(¹Yokohama National Univ., ²Shizuoka Univ., ³Kyusyu Univ., ⁴Meito Sangyo Co. Ltd.)

はじめに

がん細胞は正常細胞と比較して、血管組織が未発達であり細胞自身の冷却機能が低いため、約 42.5℃で死 滅する。そして、この特徴を活かして、磁気ハイパーサーミアというがん細胞を熱で死滅させる治療法が注 目されている。磁気ハイパーサーミアの実現化には人体影響を考慮した磁場強度・周波数下で磁性ナノ粒子 が十分な発熱を得ることが課題である。本研究では磁性ナノ粒子の測定を行い、高い発熱効率 Specific loss power (SLP) が得られたので報告する。

<u>実験方法・結果</u>

本研究では測定粒子としてフェルカルボトラン (Ferucarbotran、γ-Fe₂O₃/Fe₃O₄)を磁気分離した MS1 (名糖 産業株式会社)¹⁾ (液中粒径 61 nm, コア粒径 21.6 nm^{1,2)})を使用した²⁾。それを希釈した液中試料とエポキシ 樹脂で固定した 2 つの試料を作製した。固定試料においては、無磁場下で固定をした無配向固定試料(Fig. 1 (a))と 575 kA/m の直流磁場中で固定をして粒子の磁化容易軸を揃えた配向固定試料(Fig. 1 (b),(c))も 2 種類を 作製した³⁾。どちらの試料においても鉄濃度が 2 mg/mL になるように調整した。それぞれの試料の直流磁化 特性、また磁場強度 4 kA/m、16 kA/m、周波数 1–100 kHz で交流磁化特性の測定を行い、配向試料については 磁化容易軸に対して平行方向と垂直方向に励磁をして、試料の磁化容易軸、困難軸方向の測定を行い、SLP を 計算した。

Fig. 2 に MS1 の 4 kA/m の SLP を示す。低周波では液中試料の SLP が最大になり、高周波では容易軸方向の配向試料の SLP が最大となることが確認できた。当日はこれらの結果の詳細に加え、Resovist®との比較等も報告する。

- 1) 吉田敬, まぐね. Vol. 13, No. 4, pp161-166, 2018
- 2) Sasayama et al., IEEE Trans.Magn, Vol. 50, No. 11, 2015
- 3) Shi et al., J.Magn.Magn.Master, Vol. 473, pp. 148-154, 2019

Fig. 1 Preparation process of oriented samples.

Fig. 2 Frequency dependence of SLP of MS1.

Cuマトリクス中に配向する 強磁性単結晶ナノキューブの交流磁化特性

小林昌太¹、山南豪¹、坂倉響¹、竹田真帆人¹、山田努¹、大多哲史²、竹村泰司¹ (¹横浜国立大学、²静岡大学)

AC magnetization characteristics of oriented ferromagnetic single crystal nanocube in copper matrix

Shota Kobayashi¹, Tsuyoshi Yamaminami¹, Hibiki Sakakura¹,

Mahoto Takeda¹, Tsutomu Yamada¹, Satoshi Ota², Yasushi Takemura¹

(¹Yokohama National University, ²Shizuoka University)

<u>はじめに</u>

磁性ナノ粒子を用いた磁気ハイパーサーミア治療において、交流磁場中における磁性ナノ粒子の発熱が重 視される。従来では磁性ナノ粒子の形状磁気異方性に着目した研究が行われていた¹⁾一方、磁性ナノ粒子の 結晶磁気異方性に着目した研究というものは少ないようである。本研究では、銅マトリクス中に配向して存 在する強磁性ナノキューブについての磁化測定を行うことにより、結晶磁気異方性に由来する磁化特性を観 測することに成功した。

<u>実験方法</u>

本研究ではFig.1に示すような合金立方体試料Cu₇₅-Ni₂₀-Fe₅ alloys²⁾を用い、直流磁化測定を磁場強度4-1200 kA/m、交流磁化測定を励磁周波数 1-100 kHz,磁場強度4 kA/mの条件で行った³⁾。また、交流磁化測定においては、測定試料に直流磁場 1200 kA/m を印加することで銅マトリクス及び強磁性ナノキューブに生じる渦電流による信号のみを検出し、直流磁場を印加しない場合との差分より試料磁化のみを導出した。このとき、直流磁場は交流磁場と垂直に印加した。測定は試料の結晶方位[100]、[110]、[111]方向についてそれぞれ行った。

<u>実験結果</u>

直流磁化測定より得られた磁化曲線において、 64 kA/m以上の磁場を印加したとき、結晶磁気異方性に 由来する磁化特性の変化を確認することができた。

結晶方位[100]方向における交流磁化曲線を Fig. 2 に示 す。いずれの結晶方位においても、この交流磁化曲線に 変化は見られなかった。これは交流磁化測定では、異方 性を確認できるほど十分大きな磁場を印加することが できないためであると考えられる。TEM 等の構造評価や、 結晶磁気異方性による磁化特性の詳細は当日発表する。

参考文献

- Guannan Shi, Ryoji Takeda, Suko Bagus Trisnanto, Tsutomu Yamada, Satoshi Ota, Yasushi Takemura, *J Magn Mgn Mater*, **473**, 148, (2019)
- 金俊燮,坂倉響,竹田真帆人,銅と銅合金,56,102 (2017)

Cu₇₅-Ni₂₀-Fe₅ alloys.

Fig. 2 Hysteresis loops of Cu₇₅-Ni₂₀-Fe₅ alloys oriented in [100] direction.

Au コート Fe₂O₃ 粒子の交流磁化特性と発熱特性

山南豪¹,小林昌太¹,Tonthat Loi²,水戸部一孝³,薮上信²,山田努¹,大多哲史⁴,竹村泰司¹ (¹横浜国立大学,²東北大学,³秋田大学,⁴静岡大学)

Evaluation of AC magnetization and heat dissipation of Au coated Fe₂O₃ particles

Tsuyoshi Yamaminami¹, Shota Kobayashi¹, Loi Tonthat², Kazutaka Mitobe³,

Shin Yabukami², Tsutomu Yamada¹, Satoshi Ota⁴, Yasushi Takemura¹

(¹Yokohama National University, ²Tohoku University, ³Akita University, ⁴Shizuoka University)

はじめに

近年磁性体には様々な医療応用が期待されており、その1つに磁気温熱治療がある¹⁾。この技術の実用化に向けて、磁性体の磁化と発熱の振る舞いを解明することが重要である。本研究では、Fe₂O₃にAuをコーティングした粒子について磁化測定をすることにより、試料の磁化特性及び発熱特性を検討した。

実験方法

本研究では測定試料として粒径が 50-120 µm の Fe₂O₃粒子と Au をコーティングした Fe₂O₃粒子を用い、そ れぞれ直流磁化測定を磁場強度 4, 8, 16, 1200 kA/m、交流磁化測定を励磁周波数 10-400 kHz,磁場強度 4 kA/m の条件で行った。交流磁場印加時、光ファイバープローブで温度測定を行った際 Au コート Fe₂O₃粒子は Fe₂O₃ 粒子に比べて温度上昇が非常に大きいことが報告されている²⁾。また、磁気温熱治療用インプラントの Au コ ートしたフェライトにおいて発熱量が向上することも報告されている³⁾。Au コートの有無で異なる 2 つの試 料において磁化測定をすることにより、Au コートによる影響を検討した。

実験結果

両試料について直流磁化測定において保磁力がほとんど確認されなかった。Fig. 1 に Fe₂O₃粒子の4 kA/m, 10-400 kHz における交流磁化曲線、Fig. 2 に Fig. 1 の交流磁化曲線における原点付近の拡大図をそれぞれ示す。 Fe₂O₃粒子の交流磁化曲線において概形は直流磁化測定結果とほぼ同じであるが、周波数の増加に伴い保磁力 の増加が確認された。Au コート Fe₂O₃粒子の交流磁化曲線においては Fe₂O₃粒子の場合と同様に概形の周波 数変化はほぼなく、周波数の増加に伴う保磁力の増加が確認された。Au コート Fe₂O₃粒子の発熱は、その交 流磁化特性並びに渦電流損失より説明される。詳細は当日発表する。

参考文献

- 1) Jordan, et al, J Magn Mgn Mater, 201, pp.413-419 (1999).
- 2) Loi Tonthat, et al., IEEE Trans. Magn., 54, 5400506, (2018).
- 3) Takura, et al., IEEE Trans. Magn., 43, 2454, (2007).

-108 -
パルス磁場を用いた磁性ナノ粒子の ネール緩和とブラウン緩和過程の重畳観測

大多哲史¹,竹村泰司² (¹静岡大学,²横浜国立大学)

Superposition of Néel and Brownian relaxations of magnetic nanoparticles in applying pulse field

S. Ota¹, Y. Takemura²

(¹Shizuoka University, ²Yokohama National University)

<u>はじめに</u>

磁性ナノ粒子のハイパーサーミアや磁気粒子イメージング(Magnetic particle imaging: MPI)といった医療応用を考える際に、磁気緩和をはじめとする磁化ダイナミクスを解明は必要不可欠である。著者らはネール緩和とブラウン緩和の重畳を交流磁化曲線計測及び、パルス磁場を印加することによる二段階の磁化上昇を実験的に観測することで、Rosensweigの示した実効的緩和時間 τ_{eff} がネール緩和時間 τ_N とブラウン緩和時間 τ_B の逆数の和 $1/\tau_{eff} = 1/\tau_N + 1/\tau_B$ で表されるとした理論¹⁾では、表現できない磁気緩和現象を解明した^{2,3)}。また数値シミュレーションにおいても、磁気緩和の重畳は観測されている⁴⁾。本研究では、ネール緩和時間以下の高速で応答するパルス磁場を用いて、磁化の線形応答領域の磁場強度におけるネール緩和とブラウン緩和が重畳した磁化応答を観測し、2 つの緩和過程を分離した解析を行った。

<u>実験方法・結果</u>

純水中に分散した Fe₃O₄ ナノ粒子を試料として、立ち上がり時間は 18 ns、磁場強度は 384 A/m のパルス磁 場を印加した。粒子体積濃度は 1.24v/v%とした。実効的磁化応答 *M*eff(*t*)は、以下の式で表すことができる。

$$M_{\rm eff}(t) = M_{\rm N}(t) + M_{\rm B}(t) = M_{\rm N,max} \left\{ 1 - \exp\left(-\frac{t}{\tau_{\rm N}}\right) \right\} + M_{\rm B,max} \left\{ 1 - \exp\left(-\frac{t}{\tau_{\rm B}}\right) \right\}$$
(1)

ここで、ネール過程 $M_N(t)$ とブラウン過程 $M_B(t)$ の最大磁化をそれぞれ $M_{N,max}$, $M_{B,max}$ としたときに、コア粒径 d_C 、実効的な磁気異方性 K_u 、流体力学的粒径 d_H 、 $M_{N,max}$ に対する $M_{B,max}$ の比率 $M_{B,max}/M_{N,max}$ を見積もった。 緩和時間は、 $\tau_N = \tau_0 \exp(K_u V_M / k_B T)$ 及び $\tau_B = 3\eta V_H / k_B T$ として、ここで τ_0 は磁気回転に関わる試行時間、 V_M はコ ア粒子の体積、 k_B はボルツマン定数、T は温度、 η は溶媒粘度、 V_H は流体力学的体積である。

Figure 1 に計測した磁化 M_{exp} と、計算値である $M_{eff}(t)$, $M_N(t)$, $M_B(t)$ を示した。実測では、ネール過程の後に ブラウン過程が続く二段階の緩和過程が明瞭に観測された。式(1)を用いた計算では、粒径分布を考慮するこ とで良好な実験値へのフィッティングを行えた。最小二乗法により見積もった計算に用いたパラメータは、 $d_c=11.9\pm2.0$ nm, $K_u=18$ kJ/m³, $d_H=40\pm11$ nm, $M_{B,max}/M_{N,max}=3.7$ であった。以上より、式(1)のようなネール緩 和とブラウン緩和の重畳は 2 つの磁化過程の和として表されることを実験的に確認した。本研究では、さら に 2 つの緩和過程の支配度である $M_{B,max}/M_{N,max}$ と緩和時間の関係性についても、粒子濃度を変えた試料につ いて計測を行うことで、双極子相互作用の磁気緩和への影響を合わせて解析した。

謝辞

本研究の一部は、双葉電子記念財団、科研費 15H05764、17H03275、17K14693の助成を受けて 実施した。

<u>参考文献</u>

1) R. E. Rosensweig, J. Magn. Magn. Mater., 252, 370 (2002).

2) S. Ota, T. Yamada, and Y. Takemura, *J. Appl. Phys.*, 117, 17D713 (2015).

3) S. B. Trisnanto, S. Ota, and Y. Takemura, *Appl. Phys. Express*, **11**, 075001 (2017).

4) H. Mamiya and B. Jayadevan, Sci. Rep., 1, 157 (2011).

FeSiBNb/Cu 薄膜の磁気特性と構造解析

上部智也, 寺本真也, 三村凌可, 藤原裕司, 神保睦子*, 小林正 (三重大工, *大同大) Magnetic properties and structural analysis of FeSiBNb/Cu films T. Uwabe, S. Teramoto, R. Mimura, Y. Fujiwara, M. Jimbo*, T. Kobayashi (Mie Univ., Daido Univ.)

はじめに

近年、フレキシブル基板上への電子デバイス形成の要望が高まっている¹⁾。フレキシブル基板上に成膜された薄膜はリジッド基板上のものと比較して、機械的柔軟性、耐久性が良く軽量であるので、応用の大きな可能性がある。これらの要望にともない、各種軟磁性薄膜をフレキシブル基板上に作製する試みが行われてきている。Fe 系の微結晶材料ファインメット®は低保磁力、高磁束密度を示す材料であるが²⁾、一般に 500℃以上の熱処理が必要であるため、フレキシブル基板上での作製が困難である。そこで、本研究では、低い熱処理温度で微結晶化させるため、Fe、Cu の組成を変化させた FeSiBNb/Cu 多層薄膜を作製し、その磁気特性、構造を評価したので報告する。

実験方法

成膜には DC 電源・RF 電源を持つ4元マグネトロンスパッタリング装置を使用した。スパッタガス圧は FeSiBNb では 0.5Pa、Cu では 0.8Pa で成膜した。基板は磁気特性用に熱酸化膜付き Si、組成分析用にカプト ンテープを使用した。FeSiBNb は Fe₇₇Si₁₄B₉合金上に Nb チップを配置した複合ターゲットを使用した。また 複合ターゲットに Fe チップ配置することによって、組成を制御した。VSM、構造解析には XRD、TEM、EPMA を使用した。

実験結果

右図の Fe-6、Fe-10 は Fe チップを 6 枚、10 枚のせた FeSiBNb を 300nm 単層で成膜、FeCu-x,y,z は Fe チップ x 枚のせた FeSiBNb を ynm、Cu を z/10nm 交互に 300/y 層成膜したサンプルである。

Fig.1 は FeSiBb/Cu の保磁力 Hc の熱処理温度依存性である。 XRD から単層膜および FeCu-0,10,2、熱処理後もアモルファス構造である。一方、多層膜では x=10 では as-dep.、x=6 では 250°C、x=3 では 300°C 以上の熱処理で XRD により結晶化がみられた。結晶化が確認された試料では x=3,6 で 1Oe を下回る保磁力が得られた。Fig.2 は FeCu-6,10,2 を 200°Cで熱処理した試料の TEM 像である。XRD では確認出来なかったが、わずかに結晶化が起こっていることがわかる。

上記の結果から、200℃という低温熱処理でも微結晶材料が作 製可能であることがわかった。

参考文献

- J. Y. Chen Y. C. Lau, J. M. D. Coey, M. Li and J. P. Wang: Sci. Rep., <u>7</u>, 42001 (2017).
- 2) 吉沢克仁,山内清隆:日本金属学会誌,<u>53</u>,241 (1989).

Fig. 1 Annealing temperature dependence of coercivity.

Fig. 2 TEM image of FeCu-6,10,2 annealed at 200° C for 1 hour.

数 nm 厚アモルファス薄膜の磁気特性

野末周平,神保睦子*,藤原裕司,小林正 (三重大工, *大同大) Magnetic properties of amorphous films with a few nm thickness S. Nozue, M. Jimbo*, Y. Fujiwara, T. Kobayashi (Mie Univ., * Daido Univ.)

はじめに

CoFeSiB や FeSiB アモルファス薄膜は良好な軟磁気特性を示し,近年では,TMR,GMR 素子に採用され, 高感度磁気センサやひずみセンサとして研究されている¹⁾²⁾. これらの素子ではアモルファス薄膜は数 nm か ら数 10nm 程度の膜厚で使用されている.素子の加工時の発熱や磁気特性改善のための熱処理などが施され た場合,アモルファス薄膜の磁気特性が変化することが予想されるため,数 nm 厚のアモルファス薄膜単体 の磁気特性,構造の熱処理による影響を系統的に評価する必要があると考える.そこで,本研究では,零磁 歪系の CoFeSiB 薄膜および磁歪系の FeSiB 薄膜の磁気特性,表面形状の熱処理依存性を調査した.またこれ らの薄膜に Hf, Nb を添加し,耐熱性の向上を図った.

実験方法

成膜にはマグネトロンスパッタリング装置を使用した. 基板は水冷した熱酸化膜付き Si 基板を用いた. 到 達真空度は9×10⁻⁵Pa以下であり,成膜条件は Table 1 に示した. Co 系薄膜の熱処理は約 200Oe の直流磁界中 で行った. Fe 系薄膜では磁界は印加してい

ない. 熱処理温度および時間は 150℃~ <u>Table 1</u> Sputtering condition

400℃,1 時間である. 試料の磁気特性は VSM で測定した. また, 試料の構造解析は XRD, 表面形状の確認は AFM で行った.

同ばよ 150 し	1	0		
の磁気特性は		Ar gas(Pa)	Thickness(nm)	Applied Field
↓の構造解析は	CoFeSiB(Hf)	0.8	3.0	~100Oe
M で行った.	FeSiB(Nb)	0.5	5.0	

実験結果

Fig.1はCoFeSiB, CoFeSiBHf, FeSiB, FeSiBNb 薄膜の保磁力の熱処理温度依存性である. as-dep.のデータは 0℃の位置に示している. また,保磁力は as-dep.での値で規格化している. CoFeSiB 薄膜は 250℃の熱処理 までは若干保磁力が低下する傾向にあるが,300℃の熱処理で3倍程度まで増加することがわかる. Hf を数 at.% 添加した CoFeSiBHf 薄膜では,300℃の熱処理まで保磁力はほぼ一定の値を示した. 一方,磁歪系の

FeSiB 薄膜の保磁力は 350℃の熱処理まで低下し,400℃の熱処理で若干 増加する傾向にあった.また,FeSiBNb 薄膜は 400℃の熱処理まで保磁 力が低下した.この系での最小の保磁力は約 0.3Oe であった.

Co 系薄膜では Hf 添加で耐熱性が向上していることがわかる. Fe 系 では熱処理により保磁力が大きく低下しており, これは熱処理により成 膜時に導入された不均一な応力分布が改善された結果であると考えて いる.

参考文献

- Y. Hashimo, N. Yamamoto, T. Kato, D. Oshima and S. Iwata: J. Appl. Phys., <u>123</u>, 113903 (2018).
- 2) Y. K. Kim: J. Magn. Magn. Mater., <u>304</u>, 79 (2006).

Fig. 1 Annealing temperature dependence of normalized coercivity.

有機金属分解法による亜鉛フェライトの合成と磁気特性Ⅱ

中田勇輔、太田敏孝、安達信泰 (名古屋工業大学) Preparation and Magnetic Properties of ZnFe₂O₄ by MOD Technique II Y. Nakata, T. Ota, N. Adachi (Nagoya Institute of Technology)

1.はじめに

ZnFe2O4は、可視光領域に透過性のあるフェライトの一つであり、反強磁性を示すことで知られている。 最近、急冷法や PLD 法により作製した ZnFe2O4 結晶では、強磁性を示す報告がなされている^{1,2)}。我々は、 有機金属分解法により、強磁性を示す ZnFe2O4 薄膜ができることを見出した。Zn2+イオンがある四面体位置 に一部の Fe³⁺イオンが入ることでフェリ磁性を示すと考えられている。昨年の報告では、600℃での熱処理 結晶化過程において、冷却速度や保持時間をパラメータとして飽和磁化 Ms を増加させられ ³⁾、計算上、4 面体位置に10%程度のFe³⁺イオンを置換することができた。本報告では、さらに熱処理温度をパラメータに Msを増加できること、また、Feを一部Coに置き換えることで保持力が増大したことを報告する。

2. 実験方法

薄膜は、有機金属分解(MOD)法を用いて、シリカガラス基板上に作製した。溶液滴下後は、100℃で乾燥し、 300℃で仮熱処理を行い、必要な膜厚まで、この工程を繰り返し、最後に結晶化の温度を 480℃から 600℃で 変化させて飽和磁化の変化を調べた。また、Zn(Fe2-xCox)2O4 (x=0~0.2)を作製し磁気特性の評価を行った。

3. 結果と考察

結晶化した薄膜は、ZnFe2O4とZn(Fe2-xCox)2O4ともに単相のスピネル型構造を示す多結晶回折ピークのみ が観測され、二次相によるピークは観測されなかった。EDS による組成分析では Zn や Fe、Co の濃度偏析 が見られなかったことから、組成比の均一な膜を得ることが確認できた。Fig.1に作製した ZnFe2O4 膜の飽 和磁化に関する熱処理温度依存性を示す。結晶化が起きる低温側で Ms が増大する傾向が観察された。4K で のM-H曲線では、Fig.2に示すようにCo置換膜では、2kOeを超える大きな保磁力を示す強磁性ヒステレ シス曲線が観測された。CoFe2O4相あるいはZn1xCoxFe2O4相もハード磁性を示すので、それらの二次相に よる効果と区別する必要があるが、Coイオンが Fe サイトの置換されていれば、系の結晶磁気異方性を増大 する効果が期待できる。

References

Fig.1 The

ZnFe₂O₄films.

1) K. TANAKA et.al., J. Phys. Chem Solids Vol 59, No. 9, pp. 1611-1618 (1998)

2)N. Wakiya et.al. J. Mag. Mag. Mat. 310 (2007) pp.2546-2548

3) N.Adachi et.al. 13aC-9 日本磁気学会台42回学術講演会予稿集

T(°C) saturation magnetization Ms depending on annealing temperature for

Fig.2. The H-H curves at 4 K of ZnFe₂O₄ and Zn(Fe_{1.8}Co_{0.2})O₄films annealed at 600 °C.

六方晶層状化合物 EuSn₂As₂の自発分極

平田昂輝、坂上良介、的場正憲、神原陽一 (慶大) Spontaneous polarization of layered hexagonal compound, EuSn₂As₂ K.Hirata, R.Sakagami, M.Matoba, Y.Kamihara

(Keio Univ.)

<u>緒言</u>

EuSn₂As₂は2017年にArguillaらが初めて合成に成功し,密度汎関数理論(DFT)によるバンド分散の計算や, 電気抵抗率と磁化率の温度依存性が報告された^[1]磁性材料である.EuSn₂As₂の結晶構造は広義で六方晶に分類 される.EuSn₂As₂は,Eu²⁺の層とvan der Waals結合した2枚の[Sn₂As₂]²⁻層が交互に積層した構造をとる.また, EuSn₂As₂のAsをPで置換した構造のEuSn₂P₂は2019年にGuiらによって合成され^[2],このような構造は,過去に 熱電材料候補として盛んに研究された例があるが^{[3][4]},現在は位相幾何学的な輸送現象が観測される可能性 がある候補物質として,再び研究対象となっている.今回は2017年にSakagamiらによって高純度試料の合成 方法が確立された^[5]EuSn₂As₂に着目し,その自発分極の温度依存性を報告する.

<u>実験方法</u>

本実験では超電導量子干渉計(SQUID)を用いてEuSn₂As₂の低温下での磁化を測定した.その際,異方性を考慮しないために粉末試料を用いた.粉末試料は磁化測定に影響が少ないと考えられる弱い反磁性体であるテフロンテープとストローを用いて固定した.

<u>実験結果</u>

Fig. 1に作成した*M-H* curveを示す. *M*は磁化, *H*は磁場をそれぞれ表す。この図から,温度の上昇に伴いグラフが直線から曲線へ変化した.これは, Curie温度を境に常磁性から強磁性に転移する様子を示す.また,高磁場下(>4 T)において勾配が徐々に消失し,飽和磁化に近づいた.このことから,飽和磁化は5.0 μ_B /F.U.程度であると求まる. Fig. 2には得られたArrott plotを示す.これよりCurie温度は20.5 K程度と求まった.この温度以下の時は強磁性を示す.しかしながらArguillaのDFT計算結果は,反強磁性を仮定しており,この相違の理由はポスターにて説明する.

参考文献

- [1] M. Q. Arguilla et al., Inorg. Chem. Front. 4, 378 (2017).
- [2] X. Gui *et al.*, ACS. Cent. Sci. **10**, 1021 (2019).
- [3] H. J. Goldsmid and R. W. Douglas, Brit. J. Appl. Phys 5, 386(1954)
- [4] H. J. Goldsmid, Proc. Phys. Soc. London 71, 633 (1958)
- [5] R. Sakagami et al., Mater. Sci. Tech. Jpn. 55, 72 (2018).

Fig. 2 Arrott plot of $EuSn_2As_2$ at around the T_C .

レーザ照射条件が等方性 R(Nd or Pr)-Fe-B/α-Fe

ナノコンポジット磁石膜の作製に及ぼす影響

上之将輝,高嶋恵佑,山下昂洋,柳井武志,中野正基,福永博俊 (長崎大学)

Effect of laser irradiation conditions on preparation of isotropic R(Pr or Nd)-Fe-B/α-Fe nanocomposite film magnets

M. Ueno, K. Takashima, A. Yamashita, T. Yanai, M. Nakano, and H. Fukunaga (Nagasaki University)

1 はじめに

計算機解析により優れた磁気特性が示され注目を浴びたナノコンポジット磁石は、スパッタリング法による 薄膜材料として、優れた磁気特性を示す Nd-Fe-B 系、Sm-Co 系ならびに Fe-Pt 系ナノコンポジット薄膜磁石が 報告されてきた^{[1]-[3]}。一方、本研究室では、デバイス応用を鑑みた 10 µm を超える膜厚の磁石膜開発の一つと して、エネルギー密度 10 J/cm²以上の紫外線波長 YAG レーザを Nd-Fe-B ターゲットに照射する事により、 as-depo 状態においてアモルファス Nd-Fe-B 相内に α -Fe 相をコラムナー状に配列した自己組織化と、極短時間 の熱処理後に極微細結晶化が進み、 α -Fe 結晶粒と Nd₂Fe₁₄B 結晶粒がナノオーダで分散的に配置する手法を見 出し、厚み: 10 µm 以上、最大の(*BH*)max が 120 kJ/m³に達する等方性ナノコンポジット磁石膜を実現してきた ^[4]。本研究では、その残留磁気分極値を大幅に減らすことなく、保磁力を向上させ、ひいては、(*BH*)max を向上 させることを念頭に、 Nd₂Fe₁₄B 相の異方性定数 4.5 MJ/m³に比べ大きな異方性定数(6.79 MJ/m³) を有する Pr₂Fe₁₄B 相に着目し^[5]、Pr-Fe-B/ α -Fe ナノコンポジット磁石膜の作製を検討したので報告する。

2 実験方法

レーザパワー(以降, LP)範囲 1.5~4 Wのレーザビームを $Pr_XFe_{14}B$ (X=2.6~1.4)合金ターゲット表面にフ オーカス(*DF rate* = 0 or 0.1)^[6]するよう照射し,成膜時間 30~90 min として, Ta 基板上に成膜した。比較の ため,既報の Nd_XFe₁₄B(X=2.8~2.0)合金ターゲットに,LP:4 W,成膜時間は 30 min とし,上記と同様なレー ザ照射条件で作製した実験結果も示す。成膜後の磁石膜に対し PA(Pulse Annealing 法)を用い,2.0 sec 程度の 極短時間で熱処理を施した。磁気特性,膜組成の評価は各々VSM, SEM-EDX を用い,結晶構造は X 線回折 法により観察した。

3 実験結果

図1にLP:4W,成膜時間30minで成膜したPr-Fe-B系磁石膜 の成膜後の結晶構造を示す。既報のNd-Fe-B系ターゲットを用い た実験結果と同様,成膜直後に α -Fe相が観察される一方,Pr₂Fe₁₄B 相に該当するピークが多数発現する様子が観察された。熱処理後 に優れた硬磁気特性を得るためには、2-14-1相の形成を抑制する 必要があった。このPr₂Fe₁₄B相の形成は、ターゲットにレーザを 照射した際の輻射熱による基板温度の上昇によるものと考察し、 LPを4Wから1.5Wへ低下させ、なおかつ厚膜化のため成膜時 間90min.で試料を作製したところ、同図に示す様に、 α -Fe相の みが形成された as-depo 試料を実現した。上記のPr-Fe-B系ターゲットとNd-Fe-B系ターゲットにおける異なる現象の原因を検討す るため、今後、成膜時の基板温度の測定等を検討するち定である。

図 2 に LP: 1.5 W で作製した Pr-Fe-B 系磁石膜の熱処理後の (BH)_{max} を示す。比較のために Nd-Fe-B 系ナノコンポジット磁石膜 (LP: 4 W,成膜時間: 30 min.)のデータも併せて示す。Pr 含有量 が 11~13 at.%の領域において 60~80 kJ/m³の範囲の(BH)_{max}値が得 られた。加えて、シェラーの式を用い、それらの試料の α -Fe なら びに Pr₂Fe₁₄B 結晶粒の粒径を見積もったところ、10~13 nm の範 囲のナノコンポジット磁石膜に適した粒径である事も確認した。 しかし、上記の(BH)_{max}値は既報の Nd-Fe-B 系磁石膜のものに比べ, 最大で 40 kJ/m³程度低い値であった。同程度の組成における「残 留磁気分極値」に著しい低減は見られない一方、本研究で期待し た Pr₂Fe₁₄B 相の形成による保磁力向上が達成されない事を確認し た。Pr-Fe-B 系ターゲットにおいて優れた磁気特性が得られなかっ た原因に関しては、各々のターゲットを用いた際の「成膜時の基 板温度」や「Pr-Fe-B と Nd-Fe-B の結晶化温度の差異」等を評価し、 更に検討する予定である。

参考文献

[1] M. Nakano et. al., AIP Advances, 8, #056223 (2018)

[2]J. Zhang et. al., Appl. Phys.Lett., 86, 122509 (2005)

[3]J. P. Liu et. al., Appi. Phys. Lett., 72, 483 (1998)

[4]Wei-Bin Cui et. al., Advanced Materials, Volume 24, 1966 (2013)

[5] K. H. J. Buschow, in Ferromagnetic Materials(North -Holland Publishing, 4 (1988)).

[6] H. Fukunaga et. al., Journal of Applied Physics, 109, 07A758-1(2011).

Fig.1 Crystalline structure of Pr-Fe-B film magnets deposited using the laser power of 4 and 1.5 W, respectivery.

真空アーク蒸着法で成膜した Nd-Fe-B 系磁石膜及び Fe 薄膜の特性と挙動 桃崎瑞貴,井上直哉,高嶋恵佑,山下昂洋,柳井武志,中野正基,福永博俊(長崎大学) Properties and Characterization of Nd-Fe-B film magnets together with Fe thin films using vacuum arc deposition

M. Momosaki, N. Inoue, K. Takashima, A. Yamashita, T. Yanai, M. Nakano, and H. Fukunaga (Nagasaki University)

<u>はじめに</u>希土類系磁石膜の電子デバイスや MEMS への応用を鑑み,多くの研究者によりスパッタリング 法を用いた各種基板への Nd-Fe-B 系磁石膜の成膜がなされている^{[1][2]}。本研究室でも、金属(Fe, Ta 等)や Si 基板における PLD 法を用いた 10 µm 厚以上の Nd-Fe-B 系磁石膜の作製を報告してきた。その際、「磁石 膜と各種基板の界面における密着性」などの機械的性質の評価が、磁気特性の評価と同等、重要であること を確認している。例えば、PLD 法で 500 nm 厚の熱酸化膜付き Si 基板に Nd-Fe-B 系磁石膜を成膜した際、 熱処理時の試料の破壊現象が Nd 含有量に依存する結果を得ている^[3]。

本研究では、上記のSi基板上におけるNd-Fe-B系磁石膜の機械的性質がPLD法で作製した試料の特有の 現象かどうかに関し、PLD法と同様、比較的簡便に10µm厚以上のNd-Fe-B系磁石膜を作製可能な真空アー ク蒸着法を用い同様な実験を検討した。加えて、Nd-Fe-B系磁石膜の主元素であるFeに着目し、金属、Si、 ガラス等の各種基板にFe薄膜を真空アーク蒸着法により成膜し、磁気特性や試料の表面形態を評価・観察し、 Nd-Fe-B系磁石膜の実験結果との関係を検討・考察した。

実験方法本実験において、Nd-Fe-B系磁石膜とFe薄膜を真空アーク蒸着法により作製する際,各々,「ターゲットより数µm径以上の粒子を生成可能な厚膜化に適した条件(磁石膜)」と「基板と磁性膜界面を薄膜状態で観察するのに適したFe薄膜の作製条件」の2種類を用いた。両方の成膜手法において,(1)円筒状のアノードの内側に,円筒状のカソード(ターゲット)を設置し,(2)コンデンサと電源の組み合わせによってアノード・カソード間に単発的(パルス)にアーク放電を1秒間に1回(1 shot)発生させる手順は共通している。放電条件の制御により,原子・イオンを中心とした薄膜形成手法以外に,ドロップレット等の比較的大きな径の粒子を発生させる厚膜形成手法を使い分け,金属基板,Si(自然酸化膜・熱酸化膜付き)基板,ガラス基板上に各々成膜した。磁気特性と組成の評価にはVSM,SEM-EDX,結晶構造観察にはX線回析を用いた。

実験結果 500 nm 厚熱酸化膜付き Si 基板上に PLD 法で成膜した Nd-Fe-B 系磁石膜の Nd 含有量 (Nd/(Nd+Fe) が 15 at. %以下になると, Si 基板からの磁石膜の剥離ではなく, Si 基板の内部からの破壊現 象が生じ, 20 μm 以上の厚膜化が困難である事を我々は報告している^[3]。本研究で用いた真空アーク蒸着法 においても,同様な Nd 含有量に対する傾向や基板の破壊が観察され,この現象が PLD 法での特有のもので はない事を確認した。加えて,上記の PLD 法で得られた Nd-Fe-B 系磁石膜と Si 基板との界面を観察すると, 剥離せずに強い密着力が生じる要因として,「Fe-Si-O 化合物の存在」が最近示唆された。そこで,真空アー

ク蒸着法を用い,①自然酸化膜膜付き Si 基 板と②500 nm 厚熱酸化膜 Si 基板に Fe 薄膜 を成膜した際の成膜挙動を観察した。各々の Si 基板に 1000~5000 shots の範囲で Fe 薄 膜を成膜したところ,自然酸化膜付き Si 基 板上の試料の方が少ない shot 数,すなわち 5000 shot で剥離する現象が観察され,熱酸 化膜付き Si 基板上の Nd-Fe-B系磁石膜のほ うが密着性に優れていることが示唆された。 そこで,X線回析を用い,熱処理前後の結晶 構造を観察したものの,現状では,Fe-Si-O 化合物のピークは確認できなかった。強い密 着性の原因については今後も検討する予定 である。更に、学会発表では金属基板やガラ ス基板上での結果についても言及する。

Si(500nm熱酸化膜付き)

Fig.1 Each surface morphology of Fe films on Si substrates with a natural oxide and a 500 nm –thick thermal oxide layers, respectively, deposited using vacuum arc deposition.

参考文献

- [1] 小峠ら, 電気学会マグネティクス研究会資料, vol.169, pp.7-11, (2012).
- [2] R. Fujiwara et al., Int. J. Automobile Tech., vol.7, pp. 148-155, (2013).
- [3] M. Nakano et al., AIP Advances, 7, #056239(2017).

La-Co置換SrM型フェライトのAl, Cr, Mn添加による磁気異方性に対する影響

西田浩紀、和氣剛、田畑吉計、中村裕之

(京都大)

The influence of Al, Cr and Mn additions on magnetic anisotropy of La-Co substituted SrM type ferrite H. Nishida, T. Waki, Y. Tabata, H. Nakamura

(Kyoto Univ.)

1.緒言

M型フェライト(*A*Fe₁₂O₁₉, *A* = Sr, Ba, Pb)は価格的優位性や化学的な安定性から、広く普及して いる永久磁石材料である。現在、高性能フェライト磁石の典型となっているものがLa-Co共置換 SrM¹(Sr_{1x}La_xFe_{12y}Co_yO₁₉)で、Co²⁺が磁気異方性向上に寄与している。しかしCoの価格は非常に 不安定で、Co使用量の低減が一つの課題である。近年の研究で5種類のFe³⁺サイト(2a, 12k, 2b, 4f₁, 4f₂)のうち、四面体(4f₁)サイトに入ったCo²⁺だけが磁気異方性の向上に寄与している²⁾ことが 明らかになった。Co量の増加以外で磁気異方性を向上させる可能性として、La-Co共置換SrMに対 する第三の置換元素の添加が考えられる。本研究では、La-Co共置換SrMに八面体サイトを占有し やすい3価の金属イオン(Al³⁺,Cr³⁺,Mn³⁺)を置換することによって、磁気異方性向上の可能性を検 討した。

<u>2.実験方法</u>

Sr_{1-x}La_xFe_{12-y-z}Co_y M_z O₁₉ (M = Al, Cr, Mn) の単結晶をセルフフラックス法により合成 した。(Sr + La): (Fe + Co + M) = 1:4 となるようにSrCO₃, La₂O₃, Fe₂O₃, Co₃O₄, MnO, Al₂O₃, Cr₂O₃を所定の量秤量、混合 の後、蓋つき白金るつぼに封じ、1450°Cで 12時間保持、1200°Cまで毎時2.5°Cで降温 させた。得られた単結晶の一部を粉砕し、 粉末X線回折(XRD)によって相同定を行った。 また、波長分散型X線分析装置(WDX)を用 いて金属イオン濃度を定量した。これらの 単結晶について、SQUID磁束計を用いて磁 化測定を行い、磁気異方性を評価した。

<u>3.結果</u>

単結晶育成において、Sr/La \geq 1 の組成で幅が数ミリ程度の平板状のM型フェライトの単結晶が 得られた。WDXによる元素分析の結果、xは最大で0.35程度、yは最大で0.28程度、zは最大で1.0 程度であった。y = 0.23に近いM置換系の磁化困難軸方向の磁化曲線(Fig.1)を比較したところ、 La-Co共置換SrMに比べMn置換系では磁気異方性が向上し、Cr, Al置換系では低減した。 参考文献

1)K. Iida et al., J. Magn. Soc, Jan. 23, 1093 (1999)

2)H. Nakamura et al., J. Phys.: Mater. 2, 015007 (2019)

六方晶ラーベス相Zr(Fe,Sb)2の永久磁石としての可能性

三浦瑞生、和氣剛、田畑吉計、中村裕之

(京都大)

Possibility as a permanent magnet of hexagonal Laves phase Zr(Fe,Sb)2

T. Miura, T. Waki, Y. Tabata, H. Nakamura

(Kyoto Univ.)

1. 緒言

現代の永久磁石市場は磁気特性が良く高価な希土類磁石と、磁気特性は劣るが安価なフェライト磁石という両極端な磁石で二分されており、これらの間を埋める磁石が存在すれば新たな市場となり得る。そのためには希土類元素などの高価な元素を用いず、飽和磁化や磁気異方性が高い物質である必要がある。安価であり飽和磁化の大きな磁性体としてFeを基とした金属間化合物が考えられる。そのなかで六方晶や正方晶の化合物が磁石材料の候補となりうる。本研究ではFeを基として、六方晶構造をとるラーベス相化合物ZrFe2に着目した。ZrFe2は室温安定構造として立方晶C15型をとるが、Feの比率が高いZr29Fe71の組成では高温で六方晶C36型が存在しているという報告や[1]、ZrFe2にCrなどを添加すると六方晶C14型になるという報告がある[2]。他元素添加や適切な熱処理で一軸異方性のある六方晶相を得ることができれば、永久磁石となる可能性がある。本研究ではZrFe2にSbを添加し適切な熱処理を行うことで六方晶ラーベス相を合成し、その磁気特性を評価することを目的とした。

2. 実験方法

Zr(Fe_{1-δ}Sb_δ)_x (δ = 0.15, 0.2, x = 2, 2.5, 3) 及びZr₂₉Fe₆₂Sb₉をアーク溶解によりインゴット を合成した。得られたインゴットを石英管にアルゴンガスと伴に封入し1290°Cで24時間熱処理し、 氷水で急冷をした。得られた試料はXRDで相同定を行った。六方晶相の割合が大きい試料につい ては磁気特性を評価した。飽和磁化はSQUID磁束計で5K、室温で測定した。キュリー温度は粉末 にした同試料を振動試料型磁力計で見積もった。磁気異方性は粉末にした試料をネオジム磁石で 磁場配向させ、室温で容易軸方向と困難軸方向における磁化を振動試料型磁力計で測定し評価し た。

3. 結果と考察

XRDによる相同定の結果、すべての試料でC14型が確認された。その中でもZr29Fe62Sb9の試料 は六方晶相C14型の割合が最も大きかったため磁気特性を評価した。飽和磁化は試料全体で 74emu/g (室温), 87emu/g (5K) と見積もられ、C15型ZrFe2の飽和磁化(85emu/g, 室温, 92emu/ g, 5K)と比較してやや低下していた。また、キュリー温度は210℃と見積もられ、これもC15型 ZrFe2のキュリー温度(310℃)と比較して低下した。これらは、非磁性元素の添加によるためで ある。配向試料を用いた磁化測定の結果C14型Zr(Fe,Sb)2はc軸が容易軸となる一軸異方性をして おり、室温での異方性磁場は10kOe程度であった。

参考文献

[1] F. Stein et al., J. Phase Equilib. 23 (2002) 480.

[2] X. Meng Burang and D. O. Northwood, J. Less-Common Met. 170 (1991) 27

Co/Gd/Pt フェリ磁性多層膜における ジャロシンスキー守谷相互作用とスピン軌道トルク

西村幸恵¹, Dae-Yun Kim^{2,3}, Duck-Ho Kim¹, Yune-Seok Nam², Yong-Keun Park^{2,3}, 塩田陽一¹, 森山貴広¹, Byoung-Chul Min³, Sug-Bong Choe², and 小野輝男^{1,4} (¹京大化研,²ソウル大学校,³韓国科学技術研究所,⁴スピントロニクス学術連携研究教育センター)

Dzyaloshinskii-Moriya interaction and damping-like spin-orbit torque in Co/Gd/Pt ferrimagnetic multilayers T. Nishimura¹, D.-Y. Kim^{2,3}, D.-H. Kim¹, Y.-S. Nam², Y.-K. Park^{2,3}, Y. Shiota¹, T. Moriyama¹, B.-C. Min³, S.-B. Choe², and T. Ono^{1,4}

(¹ICR, Kyoto University, ²Seoul National University, ³KIST, ⁴CSRN)

<u>はじめに</u>

ジャロシンスキー守谷相互作用(DMI)やスピン軌道トルク(SOT)はスピントロニクス領域で非常 に重要視されている。これらの効果は空間反転対称性の破れに起因することが知られており、それらを 研究するために主に空間反転対称性が局所的に破られている重金属/強磁性二層膜の界面が利用され てきた。本研究では、反転対称性が構造全体を通じて破れている Co/Gd/Pt フェリ磁性体多層膜における DMI と SOT を調べた。

<u>実験方法</u>

本研究では、DC マグネトロンスパッタ装置を使用して、室温において熱酸化 Si 基板上に Ta(5)/Pt(3)/[Co(0.5)/Gd(1)/Pt(1)]_N /Ta(3) [単位:nm]フェリ磁性膜を作製した。ここで、Nは、Co/Gd/Pt の 3 層の繰り返し数を表し、1-5 まで変化させた。これらの薄膜をフォトリソグラフィーとアルゴンイオン ミリングを用いて細線に加工し、DMI と SOT は磁気光学 Kerr 顕微鏡を用いて電流印加磁場駆動磁壁移 動から評価した[1]。

実験結果

図 1(a)および 1(b)に示すように、DMI 定数 D およびスピンホール角 θ_{SH} は、N に対してほぼ一定であることが分かった。これらの結果は、N に比例して界面の数だけでなく強磁性層の数も増加するため一定の D を示し、また、超格子内のすべての重金属層は各重金属層が符号の異なる隣接する上部および下部強磁性層へのスピン流を生成により正味スピンホール角に寄与できないため一定の θ_{SH} を示すと考えられる。

参考文献

[1] D.-Y. Kim et al. NPG Asia Mater. 10, e464 (2018).

サブミクロンFeB粒子からなるSMCの動的磁気特性

方 冰川¹, 宮崎 孝道¹, 青木 英恵², 増本 博², 遠藤 恭¹

(1東北大学大学院工学研究科,2東北大学学際フロンティア研究所)

Dynamic Magnetic Properties of SMC made of Submicron FeB Particles

¹B. Fang, ¹T. Miyazaki, ²H. Aoki, ²H. Masumoto, ¹Y. Endo

(¹Grad. School of Eng., Tohoku Univ. ²FRIS, Tohoku Univ.)

<u>はじめに</u>

アモルファス FeB 材料はほかの鉄系アモルファス材料と比べて,飽和磁化および熱安定性が高いと考えられる.それに加え,優れた低磁場磁気特性と機械特性を有するため,アモルファス FeB バルク材料の磁気特性に関する研究がたくさん行われていた¹⁴.一方,電子機器動作周波 数のさらなる高周波化⁵にともない,渦電流損失が低く FMR 周波数が高い微粒子材料が望まれ ている.我々は,サブミクロンサイズのアモルファス FeB 粒子を合成し,それとエポキシ樹脂 と固めた軟磁性コンポジット(SMC)を作製し,その動的磁気特性を検討した.

<u>実験方法</u>

NaOH の水溶液を用いて pH を調整した Fe³⁺, B²⁺水 溶液に NaBH4 の水溶液を滴下し,サブミクロンサイズ の FeB 粒子を還元・合成した.合成した試料の粒子形 状観察は SEM,結晶構造は XRD,磁化測定は VSM を 用いて行った.また,FeB 粒子の SMC における複素透 磁率の周波数特性は,短絡型ストリップラインによる 複素透磁率測定装置を用いて測定した.

<u>実験結果</u>

合成した FeB 粒子はアモルファス相を持つ独立した 球状微粒子である. Fig. 1(a)に代表例として粒子サイズ が 570 nm であるアモルファス FeB 粒子の磁化曲線を 示した.合成した FeB 粒子の保磁力(H_c)が 8.3 Oe とな っており,良い軟磁性を持つことがわかった.また, その飽和磁化(σ_s)の値が 103 emu/g であり,バルクの報 告値(170 ± 5 emu/g)¹より低くなったのは粒子の表面酸 化層に由来するものと考えられる.

Fig. 1(b)は同じ粒子サイズを持つ FeB 粒子の SMC に おける複素透磁率の周波数特性である. µ"は 3 GHz に おいて FMR ピークが現れた. また, µ"は 13 GHz にお いてサブピークが現れ, 全体的におよそ 16 GHz の半 値幅を持つことから, サブミクロンサイズのアモルフ ァス FeB 粒子は高周波電磁ノイズ吸収体として応用が 期待できると言える.

参考文献

- ¹ R. Hasegawa et al., Appl. Phys. Lett. 29, 219-221 (1976).
- ² R. Hasegawa and R. Ray, J. Appl. Phys. **49**, 4174-4179 (1978).
- ³ F.J. A den Broeder et al., J. Appl. Phys. 50, 4279-4282 (1979).
- ⁴ A.B. Beznosov et al., Low Temp. Phys. 25, 641-644 (1999).

Fig. 1 (a) The magnetization curve of submicron amorphous FeB particles. (b) Complex permeability vs. frequency for the FeB SMC. Particle sizes in both (a) and (b) are 570 nm.

⁵ N. Hiratsuka, J. Magn. Soc. Japan **37**, 141-146 (2013).

中空 Fe₃O₄ サブミクロン粒子における スピンボルテックス形成の粒子サイズ効果

野口和樹、千葉桃子、小林悟、村上武、亘理択海、J.Manjanna¹、Jerzy A.Szpunar² (岩手大理工、¹ラニ・チャンナマ大学、²サスカチュワン大学)

Effect of particle size on spin vortex formation for Fe₃O₄ sub-micron particles

K. Noguchi, M. Chiba, S. Kobayashi, T. Murakami, T. Watari, J. Manjanna¹, Jerzy A.Szpunar²

(Iwate Univ, ¹Rani Channamma Univ, ²Saskatchewan Univ)

はじめに

Fe₃O₄の高い軟磁性と生体適合性、並びに中空構造が融合した中空 Fe₃O₄粒子は磁気 DDS などへの応用が期 待されている。最近の中空 Fe₃O₄サブミクロン粒子における 1 次反転曲線(FORC)測定から、磁化反転過程に おいてスピンボルテックス(SV)が形成することが見出されたが、中空構造における SV 構造の詳細と粒子形 態(粒子サイズ、表面状態など)との相関は明らかになっていない[1]。本研究では粒子サイズなどの形態を系 統的に制御した中空 Fe₃O₄サブミクロン粒子について FORC 測定し、SV の形成機構を調査したので報告する。

実験方法

FeCl₃・6H₂O、CH₃COONH₄、EG を用い、粒子サイ ズ 300~700nmの中空 Fe₃O₄サブミクロン粒子を溶媒 熱合成法で作成した[2]。X 線回折による結晶構造解 析、FE-SEM 及び TEM による形態評価、SQUID 磁 束計による FORC 測定(T=10~300K)を実施した。

実験結果

Fig.1 に例として粒子サイズ 318nm, 690nm 試料の T=10K 及び 300K における FORC 図を示す(縦軸は反 転磁場 Hr、横軸は印加磁場 H)。両試料とも 10K で は FORC 分布は 2 ピークを示し、温度上昇とともに 2 つのピークが原点側にシフトし、1 ピークとなるよ うな振る舞いを見せた。Fig.1(a)中の①、②の FORC 分布ピークが現れる反転磁場 Hr をそれぞれ SV の発 生磁場 Hn、消滅磁場 Ha と定義する。

Fig.2 に SV の Hn 及び Ha の温度依存性を示す。 318nm 試料では 690nm 試料と比較し Hn,Ha ともに常 に高い値を示した。温度の上昇とともに、318nm 試 料では Hn, Ha ともに急激に増加し、30K 以降ではほ ぼ一定となる一方、690nm 試料では 300K まで緩やか に増加することが分かった。この結果は粒子サイズ が小さい中空粒子ほど SV が発生しやすく消滅しや すいこと、Verwey 転移温度(~120K)以下で特に SV の安定性が変化していることを示している。

<u>参考文献</u>

 M. Chiba, S. Kobayashi, T. Murakami, J. Manjanna, J. Szpunar, AIP Advances ,Vol.9. (2019) 035235.

[2] Peng Hu, Lingjie Yu, Ahui Zuo, Chenyi Guo, Fangli Yuan, J. Phys. Chem. C, vol. 7 (2008) 900.

Fig.1 FORC diagrams at T=10K and 300K for 318nm [(a), (c)] and 690nm [(b),(d)] samples

Fig.2 SV nucleation field (Hn) and annihilation field (Ha) as a function of temperature for 318nm and 690nm samples

光 MOD 法による Bi 置換磁性ガーネットの作製と評価

Preparation and evaluation of Bi-substituted Magnetic Garnet Films by mean of an Excimer-

Laser assisted Metal Organic Deposition Process

長岡技大¹, 高純度化学², 産総研³

^O(M1)相場 遥佳 1, 袖山 和斗 1, 西川 雅美 1, 河原 正美 2, 中島 智彦 3, 土屋 哲男 3, 石橋 隆幸 1

Nagaoka Univ. of Tech.¹, Kojundo Chem. Lab.², AIST³,

^OHaruka Aiba¹, Kazuto Sodeyama¹, Masami Nishikawa¹, Masami Kawahara², Tomohiko Nakajima³,

Tetsuo Tsuchiya³, Takayuki Ishibashi¹

E-mail: s173191@stn.nagaokaut.ac.jp

【緒言】Bi 置換希土類鉄ガーネットは優れた磁気工学効果を示すため、磁場分布を可視化するイメージ ングプレートに利用されている¹⁾。我々はこれまで、有機金属分解法(MOD 法)を用いて熱処理プロセ スにより高濃度 Bi 置換希土類鉄ガーネットを作製してきた²⁾。本研究では、湾曲面の磁場分布の可視化 を想定し高分子フレキシブル基板上に磁性ガーネット膜(Nd_{0.5}Bi_{2.5}Fe_{4.5}Ga_{0.5}O₁₂)を成膜することを目的 とした新しいプロセスの開発として、パルスレーザを用いて金属有機酸塩を分解した前駆体膜を低温で 結晶化させる光 MOD 法について検討した。

【実験】組成比 Nd:Bi:Fe:Ga=0.5:2.5:4.5:0.5 の MOD 溶液(高純 度化学社製)を単結晶 Gd₃Ga₅O₁₂(GGG)基板に1層スピンコート し 100℃で 10 分間乾燥させた後、450℃で 10 分間仮焼成を行っ た。その後、波長 248nm の KrF レーザ(コヒレント社製)をホッ トプレート上(450℃)で仮焼成後の膜の上から照射した。

【結果と考察】図1(a)に得られた薄膜と、比較として熱処理プロ セスによって作製した薄膜の XRD パターンを示す。作製した膜 はガーネットの444回折ピークが観測された。60 mJ/cm²のレー ザ条件で作製した膜のピークは熱処理プロセスで作製した試料 と同程度の強度が得られた。図 1(b)に 40 mJ/cm² と 60 mJ/cm² のレーザ照射条件で作製した試料と、比較として熱処理プロセス によって作製した試料についてファラデースペクトルを示 す。レーザを照射した試料は、熱処理プロセスで作製した試 料と同様に波長 520 nm で最大回転角が得られた。照射時間 を長くすることにより、回転角は大きくなった。また、40 mJ/cm² と 60 mJ/cm² を比較すると、XRD の結果より 60 mJ/cm²の方が結晶性は優れているが、回転角は 40 mJ/cm²の Faraday 1 方が大きく、相関は得られなかった。ファラデー回転角が熱 処理プロセスで作製した試料より小さい理由として、結晶性 が不十分であることや、Biの置換量が影響している可能性が 考えられる。

謝辞 本研究は、科研費基盤研究(A)(18H03776)の助成により行った。

参考文献

- Y. Nagakubo, T. Ishibashi et al., Jpn. J. Appl. Phys., 57 (2018) 09TC02/1-5.
- 2) G. Lou et al., Optical Mat. Exp., 7 (2017) pp.2248-2259.

Wavelength [nm]

図 1(a)基板温度 450℃でレーザを 照射した薄膜と熱処理した薄膜の XRD パターン (b)40 mJ/cm²と 60 mJ/cm² のレーザ照射条件で作製し た試料のファラデースペクトル

L10型 FePtX (X=Mn, Cu, Ru, Rh)のキュリー温度変化に関する第一原理計算

小田 洋平 (福島工業高等専門学校)

First-principles calculations of Curie temperature change in $L1_0$ -type FePtX (X = Mn, Cu, Ru, Rh)

Y. Kota

(National Institute of Technology (KOSEN), Fukushima College)

1 はじめに

大きな垂直磁気異方性を示す *L*1₀ 型 FePt は高密度磁気記録媒体においてキーとなる材料である.記録密度のさ らなる向上のための方針の一つとして熱アシスト方式が検討されているが,*L*1₀ 型 FePt はその高いキュリー温度 (~750 K)が故に書き込み時の加熱によるエネルギー損失や媒体の損傷が懸念されている.この問題に対して FePt に Ru をドープすることで大きな垂直磁気異方性を維持しつつもキュリー温度を低減できることが報告されており¹⁾, 我々も先の講演会において Ru 添加の効果について理論的に検証した結果を報告した²⁾.今回の講演では添加元素を X = Mn, Cu, Ru, Rh とした場合について,元素の置換量とキュリー温度の関係を第一原理計算によって系統的に整 理したのでその結果について報告する.計算手法は局所スピン密度近似に基づくタイトバインディング線形マフィ ンテイン軌道法を採用した.*L*1₀規則化した FePt に対して (a) Fe の一部を X に置換, (b) Pt の一部を X に置換した 2つの場合を考慮し,元素置換による不規則性はコヒーレントポテンシャル近似の枠内で扱った.

2 結果および考察

Figure 1 に (Fe_{1-σ}X_σ)Pt, Fe(Pt_{1-σ}X_σ)のキュリー温度 $T_{\rm C}$ と置換量 σ 依存性の計算結果を示す. $\sigma = 0$ のとき $T_{\rm C}$ の計算結果は975 K となり,実験値 (750 K)を約 30%過大評価している. この原因として平均場近似に基づく方法で $T_{\rm C}$ を評価していることが考えられるが,Staunton らが同様の手法で計算した FePt の $T_{\rm C}$ も950 K となることを確認した³⁾.次に置換による $T_{\rm C}$ の変化の振る舞いに着目すれば,Fe を X に置換する場合 [Fig.1(a)] では添加元素の種類によらず $T_{\rm C}$ は同じ割合で一様に低くなる傾向が見られることから,磁性元素である Fe の濃度が減少することが $T_{\rm C}$ の低下につながっているものと考えられる. 一方,Pt を X に置換する場合 [Fig.1(b)] では $T_{\rm C}$ の振る舞いが置換元素の種類に依存する傾向が見られ,特に Ru 置換によって $T_{\rm C}$ が最も顕著に低下している. これは Ru 置換によって隣接する Fe の強磁性が抑えられる方向に電子状態が変化するためと考えられる. 講演では他にも磁化 $M_{\rm S}$ や磁気異方性定数 $K_{\rm u}$ の計算結果を示して議論する予定である.

Fig. 1 Calculated $T_{\rm C}$ in (a) (Fe_{1- σ}X_{σ})Pt and (b) Fe(Pt_{1- σ}X_{σ}).

References

- 1) T. Ono et al., Appl. Phys. Express 9, 123002 (2016).
- 2) 小田洋平, 第 42 回日本磁気学会学術講演会 12aPS-45 (2018).
- 3) J. B. Staunton et al., Phys. Rev. Lett. 93, 257204 (2004).

フェリ磁性体 GdCo におけるスピン波伝搬

船田晋作、西村幸恵、塩田陽一、粕川周平、石橋未央、森山貴広、小野輝男 (京大化研)

Spin wave propagation of ferrimagnetic GdCo S.Funada, T.Nishimura, Y.Shiota, S.Kasukawa, M.Ishibashi, T.Moriyama, T.Ono (Institute for Chemical Research, Kyoto University,)

<u>はじめに</u>

反強磁性体のスピントロニクスはその応答の速さなどから注目を集めている。その中でフェリ磁性体 GdFeCoの角運動量補償温度における反強磁性ダイナミクスに起因した磁壁移動速度の増大が報告され、その 磁化ダイナミクスが注目されている[1]。今回、我々は角運動量補償点近傍におけるスピン波の測定を目指し てフェリ磁性体であるアモルファス GdCo のスピン波の群速度・減衰長といった性質を、Gd と Co の組成 を変えることで角運動量を変化させたいくつかの試料で測定した。

<u>実験結果</u>

スパッタリング法を用いて熱酸化シリコン基板上に Gd_xCo_{1-x}(20 nm)/Pt(2 nm)/Ta(5 nm)を成膜した。まず組成が異 なる試料(x = 0.22, 0.30, 0.40, 0.59)において、磁化の温度依存 性を測定した(Figure 1)。室温において x = 0.22, 0.30, 0.40 の試 料はCo、x=0.59の試料はGdの磁気モーメントが支配的で あることが分かった。磁化補償点と角運動量補償点の間には 相関があり[2]、本研究で用いた試料において室温における正 味の角運動量の大きさは Gd_{0.40}Co_{0.60} < Gd_{0.30}Co_{0.70} < Gd_{0.59}Co_{0.41} < Gd_{0.22}Co_{0.78}であると推定される。次に各試料を 細線状に加工し、励起用と検出用のアンテナを作成すること でスピン波測定素子とした。スピン波伝搬方向に垂直な面内 磁場下でアンテナに高周波電流を印加してスピン波を励起 し、ベクトルネットワークアナライザで伝送波(S21,S12)を検 出した(Figure 2)。ここから群速度を求め、また、伝送波強度 のアンテナ距離依存性からスピン波の減衰長を評価した (Table 1)。測定は全て室温で行った。本測定で得られたスピ ン波の群速度と減衰長は強磁性体のスピン波理論による計 算値と定性的に整合していた。その一方でx=0.30の試料に おいては群速度が計算値より 2 倍程度大きくなることが分 かった。詳細は当日発表する。

Table 1. The values of group velocity and attenuation length for the sample with x = 0.22, 0.30, 0.59. The values in parentheses are theoretically calculated values.

x	vg [km/s]	L _{att} [µm]
0.22	10.4 (7.5)	2.13(2.60)
0.30	7.5 (3.2)	(0.98)
0.59	3.2 (2.8)	1.65(1.85)

参考文献

1) K.-J. Kim et al., Nat. Mat. 16, 1187 (2017)

2) Y.Hirata et al., Phys. Rev. B 97, 220403(R) (2018)

Figure 1.Temperature dependance of magnetization.

Figure 2. Transmission signal for Gd0.59C00.41.

Large nonreciprocal frequency shift of propagating spin waves

in synthetic antiferromagnets

M. Ishibashi, Y. Shiota, T. Li, S. Funada, T. Moriyama and T. Ono (Institute for Chemical Research, Kyoto University)

Introduction

Nonreciprocal spin wave propagation is of great interest for the realization of spin-wave-based logic circuits. It is known that spin wave packets excited by antennas exhibit different amplitudes depending on the relative direction between magnetization and microwave field [1]. In addition, asymmetric spin wave dispersion due to Dzyaloshinsky-Moriya interaction leads to nonreciprocal frequency shifts of propagating spin waves [2]. In this study, we observed large nonreciprocal frequency shifts of propagating spin waves in interlayer exchange-coupled synthetic antiferromagnets.

Experimental method

Ta (3 nm)/Ru (3 nm)/FeCoB (15 nm)/Ru (0.6 nm) /FeCoB (15 nm)/Ru (3 nm) were deposited on a thermally oxidized Si substrate by dc magnetron sputtering. From a magnetic hysteresis loop at 300 K, the canted magnetization configuration of two layers was confirmed in the low magnetic field region below the saturation field of approximately 1 kOe. The films were patterned into 50 μ m×100 μ m wires by EB lithography and Ar ion milling. Subsequently, 80-nm-thick SiO2 insulating layer was deposited by rf magnetron sputtering. Then, two coplanar waveguides consisting of Cr (5 nm)/Au (100 nm) were fabricated at the distance of 10 μ m by EB lithography and evaporator. The propagating spin waves were measured using vector network analyzer at room temperature.

Experimental results

Figure 1(a) shows the propagating spin wave spectroscopy (PSWS) under the bias magnetic field H = 200 Oe, when the bias magnetic field is applied to the perpendicular direction of the microwave field, namely transverse pumping configuration as shown in the inset of Fig. 1(a). The different amplitudes depending on the propagation direction were observed due to nonreciprocal coupling between microwave fields and spin waves [1]. Figure 1(b) shows PSWS under H = 200 Oe, when the bias magnetic field is applied along the microwave field, namely longitudinal pumping configuration as shown in the inset of Fig. 1(b). Unlike the results in the case of transverse pumping configuration, a large nonreciprocal frequency shift depending on the propagating direction was observed in the case of longitudinal pumping configuration. This nonreciprocal frequency shift is attributed to the asymmetric spin wave dispersion due to dipolar contribution [3]. In the presentation, we will discuss the microscopic origin of the asymmetric dispersion synthetic spin wave in antiferromagnets.

Reference

- 1) V. E. Demidov et al., Appl. Phys. Lett. 95, 112509 (2009).
- 2) J.-H. Moon et al., Phys. Rev. B 88, 184404 (2013).
- 3) F.C. Nortemann *et al.*, Phys. Rev. B 47, 11910 (1993).

Figure 1: (a) $\operatorname{Re}[S_{21}]$ and $\operatorname{Re}[S_{12}]$ spectrum measured with transverse pumping configuration under 200 Oe. (b) $\operatorname{Re}[S_{21}]$ and $\operatorname{Re}[S_{12}]$ spectrum measured with longitudinal pumping configuration under 200 Oe.

多重マグノニック結晶を用いたスピン波スイッチング

岩場雅司,藤原早希,関口康爾 (横浜国立大学理工学部) Spin-wave switching by a double dynamic magnonic crystal M. Iwaba, S. Fujiwara, and K. Sekiguchi (Yokohama National Univ.)

はじめに

磁性材料に存在するスピン波は、新しい低消費電力の情報処理システムの技術基盤として有望視され、近 年集中的に研究されている。たとえば、スピン波干渉を用いたデジタル論理回路研究¹⁾や、導波路中で伝搬 制御するマグノニック結晶研究があげられる²⁾。マグノニック結晶として、変調磁場を用いた動的マグノニ ック結晶はスピン波の減衰バンドを作ることができ、CMOS 回路のようなトランジスタ機構を作製すること が可能である³⁾。本研究では、動的マグノニック結晶を用いたスピン波スイッチングについて研究した。

実験方法

スピン波媒体としてイットリウム鉄ガーネット (Yttrium Iron Garnet: YIG) を使用しており、厚さ 5.1 μ m、幅 1.3 mm である。図 1 に動的マグノニック結晶を用いた実験の試料・基板構成を示す。スピン波はマイク ロ波パルスを入力アンテナに投入することで励起し、パルス長は 10 ns とした。出力アンテナによって、ス ピン波による誘導起電力を検出し、広帯域オシロスコープで測定した。スピン波の励起、検出用のアンテナ は、75 μ m の幅のアンテナを用いた。アンテナ間距離は 15.5 mm である。変調磁場を発生させるため、メア ンダに電流 I = 0.12 A を流した。外部磁場 $H_{ex} = 378$ Oe を試料長手方向に印加し、スピン波のバックワード モード (Magnetostatic backward volume mode) を発生させた。動的マグノニック結晶であるメアンダ構造は 75 μ m と 90 μ m の線幅からなり、周期はそれぞれ n = 15 である。

結果および考察

図 2 に広帯域オシロスコープで観測したスピン波の実時間波 形を示す。動的マグノニック結晶であるメアンダに電流を流して いないときは、スピン波の最大振幅 が 70µV であった。一方、 メアンダに電流 *I*=0.12A を流して変調磁場を発生させると、ス ピン波の最大振幅が 55µV まで減衰した。スピン波波束の振幅 が動的マグノニック結晶によって 21% 減衰していることがわか った。周波数スペクトルに対しても、減衰効果を確認することが でき、スイッチングの基礎原理が確認できた。

結論

多重動的マグノニック結晶を用いることで、スピン波 の減衰が起こることを確認することができた。動的マグ ノニック結晶による減衰強度を改善することができれば、 スピン波伝搬の完全スイッチングを実現することができ るため、マグノントランジスタ回路への応用が期待でき る。

参考文献

- 1) N. Kanazawa et al: Sci. Rep., 7, 7898(2017).
- 2) K. Sekiguchi: AAPPS Bulletin, 28, 2 (2018).
- 3) A.V. Chumak *et al*: J. Phys D, **42**, 205005 (2009).

図1 マグノニック結晶基板構成

図2 スピン波の実時間波形

-125-

単結晶 NiO 薄膜におけるスピン流伝送の結晶配向依存性

池渕徹也,森山貴広,小田研人,岩城宏侑,小野輝男 (京大化研)
Crystal orientation dependence of the spin current transmission in single crystalline NiO thin films
T. Ikebuchi, T. Moriyama, K. Oda, H. Iwaki, and T. Ono (ICR, Kyoto Univ.)

<u>はじめに</u>

反強磁性体をスピントロニクスの分野に用いる試みが近年注目を集めている[1]。先行研究では、強磁性共 鳴測定により強磁性体 FeNi から多結晶の反強磁性体 NiO にスピン流を注入し、NiO 中を流れるスピンの伝 搬長を見積もった[2]。しかし、NiO 中のスピン流伝送についての詳細なメカニズムは未だ明らかになってい ない。そこで本研究では(111)面と(001)面にそれぞれ単結晶成長させた NiO 薄膜を作製し、同様の測定をす ることでスピン伝搬長の結晶配向依存性を求めた。

<u>実験方法</u>

Al₂O₃(0001)基板および MgO(001)基板上に NiO (*t*_{NiO}) / Py(5) / SiO₂(5) (単位:nm)多層膜をスパッタ法で作製 した。XRD 測定および RHEED 像により NiO 薄膜は Al₂O₃(0001)基板では NiO(111)に MgO(001)基板では NiO(001)にそれぞれ単結晶成長していることを確認した。それらの試料をフォトリソグラフィ法によって細 線状に加工し、Ti/Au で作製されたコプレーナ導波路を取り付けた。測定は全て室温で行い、素子に周波数を 固定した不均一高周波電流を流しながら外部磁場を掃引することで強磁性共鳴を誘起した[3]。

実験結果

まず、ギルバートダンピング定数 α を共鳴スペクトルから見 積もり、NiO 膜厚に対してプロットした(Fig.1)。スピンポンピ ングの理論式を適用すると α の NiO 膜厚依存性から NiO 中 のスピン伝搬長 λ_{NiO} を求めることができる[4]。その結果、 NiO(111)配向の単結晶試料では λ_{NiO} は 68±10 nm となり、 NiO(001)配向の単結晶試料では α は NiO 膜厚に対して変化し ないことが明らかになった。この結果は NiO(001)配向の場合で は NiO(111)配向の場合と比較してかなり長い距離をスピンが

Fig. 1. α as a function of t_{NiO} in single crystalline

伝搬することを示唆している。さらに、スピン流が NiO 層を通過していることを確かめるために Pt/NiO/Py 三層膜においても同様の実験をし、αの NiO 膜厚に対する依存性を調査した。その詳細は当日発表する。 参考文献

T. Jungwirth, X. Marti, P. Wadley and J. Wunderlich, *Nat. Nanotechnol.* **11**, 231-241 (2016).; V. Baltz, A. Manchon, M. Tsoi, T. Moriyama T. Ono and Y. Tserkovnyak *Rev. Mod. Phys.* **90**, 015005 (2018).

- 2) T. Ikebuchi, T. Moriyama, H. Mizuno, K. Oda and T. Ono Appl. Phys. Express 11, 073003 (2018).
- 3) T. Ikebuchi, T. Moriyama, Y. Shiota and T. Ono Appl. Phys. Express 11, 053008 (2018).
- 4) Y. Tserkovnyak, A. Brataas, G. E. Bauer, and B. I. Halperin, Rev. Mod. Phys. 77, 1375 (2005).

Snell's law for isotropically propagating spin wave

Tian Li¹, Takuya Taniguchi^{1, 2}, Yoichi Shiota¹, Takahiro Moriyama¹, and Teruo Ono^{1, 3†}
 ¹Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
 ²Deptartment of Physics, Technical University of Munich, Munich 85748, Germany
 ³Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka Univ., Osaka 560-8531, Japan

Introduction

Control of spin wave (SW) propagation is one of crucial tasks in magnonics [1]. As one of the important properties of the propagation, refraction of magnetostatic surface spin wave (MSSW) has been investigated [2]. However, anisotropic Snell's law of MSSW requires complex calculation and it is not easy to apply techniques grown in optics. Regarding the dispersion relation of SW considering exchange interaction and dipole-dipole interaction [3],

$$\omega^{2} = \left(\omega_{H} + \alpha \omega_{M} k^{2}\right) \left[\omega_{H} + \alpha \omega_{M} k^{2} + \omega_{M} \left(1 - \frac{1 - e^{-kd}}{kd}\right)\right] \tag{1}$$

SWs propagating in-plane with out-of-plane magnetization propagate isotropically. Furthermore, Eq.1 describes the dispersion relation of magnetostatic forward volume wave (MSFVW) when $\alpha \omega_M k^2 = 0$ is assumed. In this study, we investigated Snell's law for both MSFVW and isotropically propagating dipole-exchange SW.

Simulation condition

The micromagnetic simulation is performed utilizing mumax3[4]. We use material parameters of yttrium iron garnet (YIG). In the simulation, samples are shaped as Fig.1. The black and white areas are respectively the thicker and thinner regions. And the thickness step, the boundary between two regions, is tilted with the angle θ_1 . The rf magnetic field is applied at the antenna. MSFVW is excited in the thicker(800 nm) region, passes through the thickness step and propagates in the thinner(400 nm) region.

Results

The incident wave is refracted by following Snell's law $\frac{\sin\theta_1}{\sin\theta_2} = \frac{k_2}{k_1}$. The wave number is independent of the direction of propagation due to the isotropic dispersion property. For MSFVW, a wavenumber is varied in order to keep *kd* constant when it passes through a thickness step. Hence, the Snell's law for MSFVW is independent of frequency (Fig.2).

Figure 1: Simulation setup

Figure 2: Refraction angle versus incident angle of MSFVW

References

- [1] A. V. Chumak et al., Nat. Phys. 11, 453 (2015).
- [2] J. Stigloher et al., Phys. Rev. Lett. 117, 037204 (2016).
- [3] B. A. Kalinikos and A. N. Slavin, J. Phys. C: Solid State Phys. 19, 7013 (1986).
- [4] A. Vansteenkiste et al., AIP Adv. 4, 107133 (2014).

外乱状況下における湾曲磁気浮上制御 (スライディングモード制御を用いた実験的考察)

小川和輝、多田誠、成田正敬、加藤英晃 (東海大学)

Bending Magnetic Levitation Control under Disturbance Conditions (Experimental Consideration Using Sliding Mode Control) K. Ogawa, M. Tada, T. Narita, H. Kato (Tokai Univ.)

<u>はじめに</u>

電磁石の吸引力を利用した非接触支持を行うため、磁 気浮上技術の検討が盛んにおこなわれている¹⁾。当研究 グループでは、過去に磁気浮上による非接触搬送の実現 性を確認している。また薄鋼板を対象とする場合には、 鋼板を塑性変形しない範囲で曲げた状態で浮上させる 湾曲磁気浮上を考案した^{2,3)}。本研究では実際の使用環 境を想定し、電磁石ユニットに外乱が入力された状態に おける浮上性能について検討した。

<u>湾曲浮上実験</u>

Fig. 1 に湾曲磁気浮上装置の概略図を示す。浮上対象 は長方形亜鉛めっき鋼板(長さa = 800 mm、幅b = 600 mm、厚さh = 0.19 mm)を使用している。長方形鋼板を 5箇所の電磁石により非接触支持するために、鋼板の変 位を5個の渦電流式非接触変位センサにより検出する。 5個の電磁石のうち周囲の4個は傾けることができる機 構になっている。また、中央の電磁石は垂直方向に可動 できる。このように5個の電磁石を移動、傾斜させるこ とによって様々な湾曲角度で鋼板を磁気浮上させるこ とができる。

なお、電磁石ユニットを設置している3本のフレーム の下に設置した加振器(Fig. 2)によって、外乱を電磁 石本体に入力できる構成になっている。Fig.3に外乱入 力時のフレーム変位時刻歴を示す。このように電磁石ユ ニットをランダムノイズによって物理的に振動させた 状態で浮上実験を行い浮上性能について検討を行った。 参考文献

- 水野,精密工学会誌, Vol. 68, No. 9, (2002), pp. 1180-1183.
- 丸森他, 日本機械学会論文集, Vol. 81, No. 823, (2015), 14-00471.
- 米澤他, 日本 AEM 学会誌, Vol.24, No. 3, (2016), pp.137-142.

Fig. 1 Schematic illustration of experimental apparatus

Fig. 2 Photograph of vibrator

Fig. 3 Time history of displacement of vibrating frames by the random disturbance

電磁石・永久磁石併用型薄鋼板磁気浮上システム (鋼板形状が浮上安定性に与える影響)

伊藤 誉淳,小田 吉帆,椎名 敦紀,成田 正敬,加藤 英晃 (東海大学)

Thin plate steel magnetic levitation system combining electromagnet and permanent magnet (Effect of steel plate shape on levitation stability) Y. Ito, Y. Oda, A. Shiina, T, Narita, H. kato

(Tokai Univ.)

はじめに

薄鋼板は搬送工程において通常ローラによる接触搬送が行われ、ローラとの接触による傷やめっき不良な ど表面品質の劣化が問題となっている。当研究グループでは、電磁石を設置していない部分に永久磁石を設 置し、これらの磁力を浮上安定化のために有効利用した電磁石・永久磁石併用型薄鋼板磁気浮上搬送システ ムを提案している。一方、鋼板の浮上安定性が最良となる永久磁石の配置を実験的に求めることは,設置パ ターンが膨大にあるため不可能である。そこで,遺伝的アルゴリズムを適用し,鋼板の浮上安定性が向上す る永久磁石配置の探索を行った¹⁾。さらに,永久磁石の極を考慮することで,永久磁石が薄鋼板に及ぼす吸 引力が変化することを磁場解析によって確認している。この解析結果を遺伝的アルゴリズムに適用すること で以前よりも浮上安定性が向上する永久磁石配置を得ることが出来た²⁾。しかし,これまでの検討で薄鋼板 のたわみが浮上中の振動の原因になることを確認してきたが,振動の原因となる鋼板形状についての検討が 十分に行えていない。そこで,本報告では遺伝的アルゴリズムで用いる評価関数の重み係数を変更すること によって,振動の原因となるたわみの特定と浮上安定性が最も向上する評価値の検討を行った。

電磁石・永久磁石併用型薄鋼板磁気浮上システム

浮上対象は長さ 800 mm、幅 600 mm、板厚 0.24 mm の長方 形亜鉛めっき鋼板(材質 SS400)を使用する。浮上対象の上 方に 5 つの浮上用電磁石ユニットを設置し、電磁石ユニット の周囲に複数のフェライト磁石を設置する。浮上用電磁石ユ ニットは 2 つの電磁石と渦電流式変位センサ 1 つで構成され る。5 mm の距離を保つように制御を行う。

遺伝的アルゴリズムによる最適化

遺伝的アルゴリズムを用いた永久磁石の最適配置探索を行った。探索によって得られた永久磁石の配置図とこのときの 配置を用いた際の浮上中の鋼板形状を Fig.1 と Fig.2 に示す。 今後、評価値で用いている重み係数の値を変更し、永久磁石 の最適配置探索を行い、探索結果をもとに浮上実験を行うこ と浮上安定性が最も高い永久磁石配置の比較検討を行う。

参考文献

 石井,成田,加藤,電磁石と永久磁石による薄鋼板のハ イブリッド磁気浮上システム:-磁場の相互作用を考慮 した最適配置探索に関する基礎的検討一日本 AEM 学会 誌, Vol. 24 (2016), No. 3, pp. 149-154

Fig. 1 Arrangement of permanent magnets

Fig. 2 The shape of steel plate

 成田,長谷川,押野谷,永久磁石を用いた薄鋼板のハイ ブリッド磁気浮上システム,J. Magn. Soc. Jpa, Vol. 37 (2013), No. 2, pp. 29-34

双方向 LLC 共振形 DC-DC コンバータの特性比較

五来 一樹, 北野 宏希, 清水 優太, 鈴木 黎矢, 早乙女 英夫 (千葉大学) Characteristic Comparison of Bidirectional LLC Resonant DC-DC Converters

K.Gorai, K.Kitano, Y.Shimizu, R.Suzuki, H.Saotome

(Chiba University)

<u>はじめに</u>

太陽光発電や風力発電は天候等により出力電力が不安定となるため,蓄電池等による電力の平準化が求められる⁽¹⁾。蓄電池を充放電する電力変換器として,双方向 DC-DC コンバータが用いられる。本報告では,回路構成の異なる 3 方式の双方向共振型 DC-DC コンバータおよび非共振型である双方向チョッパ方式の特性比較を,シミュレーションを用いて行った結果を示す。また,双方向共振型 DC-DC コンバータの回路設計の考え方について述べる。

<u>比較方法</u>

シミュレータ⁽²⁾を用いて,複数の双方向コンバータの出力特性,損失の調査およびその他の特性比較を行った。ここで、シミュレーション回路は実機実験による電圧電流波形と事前に比較し、概ね実験結果を模擬できていることを確認した。本比較調査に当たりトランスのコアは統一とし、各コンバータに対してそれぞれ 双方向に同程度の電力伝送ができることを条件として設計した結果で比較した。また、共振型コンバータではスイッチング損失の低減を目的に ZVS(Zero Voltage Switching)の実現を条件とした。

<u>設計</u>

双方向共振型 DC-DC コンバータでは、回路の共振周波数とトランスの巻数比により電力特性が変化する。 Fig.1 に示すハーフブリッジ型の回路を例にするとV_HからV_Lへの電力伝送を実現する、図に破線で示した電流 経路の共振周波数f_rは次式のように表される。

$$f_{\rm r} = \frac{1}{2\pi\sqrt{L_{\rm H}C_{\rm H}}} = \frac{1}{2\pi\sqrt{L_{\rm L}C_{\rm L}}}$$
(1)

 $f_r = 5,10,15,20,30$ および 50 (kHz)のときの Fig.1 のコン バータの駆動周波数 f_s に対する V_H から V_L への出力電力特性 を Fig.2 に示す。ここで、 $V_H = 100$ (V), $V_L = 10$ (V)とした。 f_r が低いほど最大出力電力は大きくなる。一方、 f_r を低くす ると f_s は低くなり、トランスの両端の電圧時間積が増加し コアの磁気飽和が問題となる。また、トランスの巻数比に よってコンバータの最大出力電力が増減する。例えば巻数 比 10:1 から 6:1 へ変更すると、 V_H から V_L の電力伝送時のト ランスの電圧ゲインが大きくなるため、 V_H から V_L へ伝送す る電力は大きくなる。一方で逆方向の V_L から V_H への電圧ゲ インは小さくなり、伝送できる電力も小さくなる。シミュ レーションによって双方向で同程度の最大出力電力が得ら れる巻数比を調査し、回路設計を行った。

<u>参考文献</u>

- Shigenori Inoue, Hirofumi Akagi: "A Bidirectional DC-DC Converter for an Energy Storage System With Galvanic Isolation", IEEE Transactions on Power Electronics, Vol. 22, No. 6, pp.2299-2306(2007)
- (2) http://www.intsoft.co.jp/products/product04.html

Fig.1 Bidirectional DC-DC resonant Converter. (- - Power transmission current path)

Fig.2 Simulated characteristics of the converter. Output power $(V_{\rm H} \rightarrow V_{\rm L})$ v.s. switching frequency $f_{\rm s}$.

マイクロ波アシスト磁気記録方式を用いた二層選択記録の検討

斎藤 若, サイモン グリーブス (東北大学)

Investigation of dual-layer selective recording using microwave assisted magnetic recording W. Saito, S. J. Greaves

(Tohoku University)

はじめに

独立な複数の記録層を実現できれば、単層メディアと比べより大きな記録密度を達成することができる. しかしこれには、データの書き込みや読み出しなどに問題が存在している.書き込みにおいては、二層間の 静磁気相互作用が記録層の選択可能性に悪影響を及ぼす.層間に反強磁性交換結合(Antiferromagnetic Exchange Coupling, AFC)を導入することで二層間の静磁気相互作用を打ち消し、記録性能の向上を目指す [1].本報告では、記録層への書き込みにマイクロ波アシスト磁気記録(Microwave Assisted Magnetic Recording, MAMR)を用いることを想定し、マイクロ磁気シミュレーションを行い検討している.書き込みへ ッドは用いず、スピントルク発振素子(Spin-Torque Oscillator, STO)からの高周波(High Frequency, HF)磁界 のみを用いて磁化反転を促すことが目的である.

モデルとシミュレーション、および結果

二層の記録層を想定したシミュレーションで用いたモデル を Fig. 1 に示す. なお比較のため, 各記録層それぞれについて, もう一方の記録層を想定しないモデル, すなわち単層媒体と しての計算も行っている(この時その他のパラメータは Fig. 1 と同様). このモデルにおいて, T = 300 K, STO の M_s = 1591 emu/cm³, HF 磁界の印加時間は 2 ns, 各記録層で M_s = 750 emu/cm³, α = 0.02, RL1 の軟磁性層で K_u = 1 Merg/ cm³ である. 本報告では, RL1 の硬磁性層で K_u = 8.1 Merg/ cm³, RL2 で K_u = 6.1 Merg/cm³ としている. シミュレーショ ンは Landau-Lifshitz-Gilbert (LLG) 方程式を用いている.

 Fig. 2 に結果を示す. 凡例の上二つの結果(以下単層の結果)は、各記録層単体での計算結果である. それに対し、中二つは Fig. 1 のモデルで計算した結果(以下 AFC 無しの結果)、下二つは Fig. 2 のモデルの二層間に -4.74×

 10⁻⁸ erg/cm の AFC を導入した結果である(以下 AFC 有りの結果). 結果から、AFC 無しの記録は単層の記録と比べ反転確率が落ちることがわかる. これに対し、AFC 有りの結果では、RL1 で最大反転確率 0.99、RL2 で 0.90 であった. AFC 有の結果における最大反転確率と、AFC 無しの結果との差は、RL1 で

 $\Delta_1 = 0.06$, RL2 で $\Delta_2 = 0.07$ であった.以上から, AFC を導入することにより,単層の結果には及ばないが, 二層化の結果と比べ最大反転確率に有意な増大が見られることが分かった. AFC を導入することにより二層 間の静磁気相互作用を打ち消すことができていると考えられる.

<u>参考文献</u>

 S. J. Greaves, Optimizing Dual-Layer Recording Using Antiferromagnetic Exchange Coupling, IEEE, Trans. Magn. 54, 3001585 (2018). 反強磁性スキルミオンの安定性の検討

濱田 海、仲谷 栄伸 電気通信大学、情報理工学研究科

Stability of the Antiferromagnetic Skyrmion

Kai Hamada, and Yoshinobu Nakatani

Graduate School of Informatics and Engineering, The University of Electro-Communications

はじめに

近年、レーストラックメモリにおいて、スキルミオンの利用が検討されている[1,2]。しかしながら、強磁性 体中に現れるスキルミオンを用いた場合、電流駆動の際にトラック上を直進せず、試料端に衝突し、消滅する 問題が指摘されている[3]。この問題に対し、トラック上を直進するため、試料端に衝突せず、消滅しにくいと される反強磁性スキルミオンの利用が提案されている[4]。本研究では、マイクロマグネティックシミュレー ションを用いて、強磁性および反強磁性体の領域端における消滅条件について検討した。

計算条件

材料定数は PtCo の値を用い、飽和磁化 580 emu/cm³、異方性定数 0.8 M erg/cm³、交換スティフネス定数 1.5×10⁶、DMI 定数 3.4 erg/cm²、損失定数 0.3、非断熱項 0.3、分極率 0.4 とした[2]。細線トラックのサイズは 128(x)×64(y)×0.4(z) nm³ とした。細線トラック上の中心に強磁性及び反強磁性スキルミオンを 1 つ配置し、ス ピン電流を-x 方向に流してスキルミオンを移動させ、領域端に衝突させた。電流密度を変化させて領域端に おける消滅条件を調査した。

結果

図1,2に強磁性スキルミオンの領域端における消滅の様子及び強磁性スキルミオンの中心の軌跡を示す。 図1,2より、強磁性スキルミオンは電流印加後、+x方向に移動し、領域端に衝突後、上方に移動し、領域端側 から構造が崩れ、消滅することがわかった。消滅電流密度はJ=205.8 MA/cm²であった。続いて、図3,4に反強磁 性スキルミオンの領域端における消滅の様子及び反強磁性スキルミオンの中心の軌跡を示す。図3,4より反 強磁性スキルミオンは電流印加後、-x方向に移動し、領域端に衝突後静止し、その後に領域端側から構造が 崩れ、消滅することがわかった。消滅電流密度はJ=517.3 MA/cm²であった。これより、反強磁性スキルミオン は強磁性スキルミオンと異なり、領域端に衝突後も細線トラックの中心部に留まった後に破壊されることが わかった。また、強磁性スキルミオンに比べて消滅電流密度が約2.5 倍高く、破壊されにくいことがわかった。

T. H. R. Skyrme, Proc. Roy. Soc. Lond. A 31, 556(1962) [2] J. Sampaio, et. al., Nat. Nano. 8, 839(2013)
 M. Mochizuki, Magnetics Jpn., 10, 192 (2015) [4]X. Zhang, et. al., Sci. Rep., 6, 24795 (2016)

GdFeCoフェリ磁性体合金における 全光型磁化反転交番誘起の異常ホール効果による電気的検出 ^{笠谷雄-1,2},吉川大貴¹,塚本新¹ (¹日大理工,²学振PD)

Electrical Detection of Alternating Excitation of All-Optical Magnetization Switching in GdFeCo ferrimagnetic alloy by Anomalous Hall Effect Y. Kasatani^{1,2}, H. Yoshikawa¹ and A. Tsukamoto¹ (¹College of Science and Technology, Nihon Univ., ²JSPS Research fellow)

1 はじめに

近年、超短パルスレーザーを用いた全光型磁化反転(AOS)が、磁化反転がピコ秒以内で完了する点、低消費エネル ギーである点などから、現象発見以来注目されてきた¹⁾。AOS により生じる磁区サイズと試料膜厚や照射レーザー強 度との関係については、磁気光学イメージングを用いた研究が進められている²⁾一方で、AOS のデバイス応用に向け た光磁気スイッチングの電気的定量的検出が望まれている。本研究では、微細素子構造を有する GdFeCo フェリ磁性 体において、レーザーパルス列により誘起された交番的 AOS を異常ホール効果を利用して電気的に検出した。

2 実験方法

Si 基板上に SiN(10 nm)/Gd₂₃FeCo(20 nm)/SiN(100 nm) からなる RE-TM フェリ磁性体薄膜をスパッタリング法に より作成した。電子線リソグラフィー装置を用いて、幅 50 µm、長さ 800 µm のホールバー形状に加工した。試料に定 電流源および電圧計を接続し、波長 800 nm、パルス幅 35 fs、繰り返し周波数 0.25 Hz のレーザーパルス列を試料に照 射することで生じた磁化状態の交番的変化を、異常ホール効果を利用して電圧として測定した。

3 結果および考察

Fig. 1 に無磁場下でのレーザーパルス列照射中の異常ホール電圧 V_H の時間変化および磁気光学像の一部を示す。膜面垂直方向に飽和した試料に時間 t = 0 で最初の単一レーザーパルスが照射され、 V_H が H 状態から L 状態へと急峻に変化した。これと同時に磁気光学像のホールバー中心部が淡灰色から濃灰色に変化した。そして、次の単一レーザーパルス照射により V_H が L 状態から H 状態に急峻に変化すると同時に、ホールバー中心部において磁化が再度反転した。以後、レーザーパルスが照射される毎にこれら一連の変化が H 状態と L 状態の二状態間で繰り返し生じた。以上の結果から、 V_H の急峻な変化は、GdFeCo においてレーザーパルス列の照射によって生じた交番的 AOS を電気的に検出したものであると考えられる。

謝辞

本研究は JSPS 特別研究員奨励費(18J00338)の助成を受けたものである。

References

1) C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, Phys. Rev. Lett. 99, 047601 (2007).

2) H. Yoshikawa, S. E. Moussaoui, S. Terashita, R. Ueda, and A. Tsukamoto, Jpn. J. Appl. Phys. 55, 07MD01 (2016).

フルグラニュラ積層型垂直磁気記録媒体の提案: 強磁性酸化物粒界を有する高 Ku CoPt グラニュラ型キャップ層の開発 [°]タム キム コング^a, 櫛引 了輔^a, 鎌田 知成^a, 斉藤 伸^b (a)田中貴金属工業株式会社, b)東北大学)

Proposal of full granular stacked perpendicular magnetic recording media: Cap layer with high K_{μ} CoPt grains and ferromagnetic oxide grain boundaries materials

^oKim Kong Tham ^{a)}, Ryosuke Kushibiki ^{a)}, Tomonari Kamada ^{a)}, and Shin Saito ^{b)} (^{a)} TANAKA KIKINZOKU KOGYO K.K., ^{b)} Tohoku University)

はじめに 垂直磁気記録における高い信号対雑音比,高いオーバーライト性能および熱安定性を満足させるために、 グラニュラ記録層 (GRL) およびキャップ層 (CL) の積層媒体が実用されている. GRL は, CoPt 合金磁性結晶粒と 非磁性酸化物粒界から構成されている.CLはGRLの粒間交換結合の度合い¹⁾および反転磁界の分散²⁾を制御する ために用いられ,その材料としては Co/Pd 多層膜³,希土類 (RE) 合金薄膜⁴, CoPtCrB 合金薄膜⁵ に代表される

ように、低い磁気異方性エネルギー (Ku) と強い粒間交換結合を持つ 金属連続層が提案されてきている.しかしながら CL は金属と酸化物 との二相分離組織を有する GRL 上に堆積されるため膜厚方向に組織 不均一となり、その結果前述の磁気特性が局所的に大きなばらつき を有する状況にあることは容易に推察されるの. この問題を解決する ために我々は、強磁性酸化物粒界と高 Ku CoPt 磁性結晶粒からなる 新規グラニュラ型 CL を積層したフルグラニュラ垂直磁気記録媒体 を提案する.本研究では強磁性酸化物粒界材として RE 酸化物を用 いたCLをCoPt-B2O3 GRL 上に積層したフルグラニュラ媒体の磁気 特性と微細構造を検討したので報告する.

実験結果 媒体は室温で作製し,層構成をC(7 nm)/Co₈₀Pt₂₀-30vol% RE oxide (0-9 nm)/ Co₈₀Pt₂₀-30vol% B₂O₃ (16 nm)/ Ru₅₀Co₂₅Cr₂₅-30vol% TiO₂ (1 nm)/ Ru (20 nm)/ Ni₉₀W₁₀ (6 nm)/ Ta (5 nm)/ glass sub.とした. RE oxide としては Gd₂O₃, Nd₂O₃, Sm₂O₃を用いた.

Fig. 1 には, CoPt-RE 酸化物 CL (9 nm) を CoPt-B₂O₃ GRL (16 nm) 上に堆積させた媒体の 磁化曲線を示す.参考のために、CL を積層 していない CoPt-B₂O₃ GRL (16 nm)の磁化曲線も破線で示した。RE 酸化物を有する CL が CoPt-B₂O₃ GRL 上に堆積されると,生成磁界 (H_n)の増加および飽和磁界(H_s)の減少が観察される.一例として CoPt-Gd₂O₃ CL の媒体に注目すると, H_nは 0.7 から 1.1 kOe に増加 し, H_sは21.5から16 kOe まで減少している. これらのことは, CoPt-RE 酸化物 CL が粒間交換結合を制御し, 反転磁界の分散を低減させるの に極めて有効であることを示している. Fig. 2 には, CoPt-B2O3 GRL 上に CoPt- Gd₂O₃ CL を積層した媒体の環状暗視野走査型透過電子顕 微鏡 (ADF-STEM) 画像を示す. 組図には, ADF-STEM 画像と同一視 野の Gd, O, Co, Pt の EDX 元素分布も示している。CL の粒界に着 目すると、主として Gd および O 元素が存在することが観察できる. これは、CL 粒界に強磁性 Gd₂O₃相が析出していることを示している. 一方, CoPt 結晶粒については, Co および Pt の元素分布により, GRL から CL まで連続して連なっていることが確認できる. このことは今 回作製したフルグラニュラ型キャップ媒体では、GRL から CL へ磁 性結晶粒がコラム状に成長することを示している.

参考文献 1) Y. Sonobe et al., 91, 8055 (2002). 2) Y. Sonobe et al., J. Magn. Magn. Mater., 303, 292 (2006). 3) K. K. Tham et al., IEEE Trans. Magn., 43, 671 (2007). 4) T. Shimatsu et al., J. Appl. Phys., 91, 8061 (2002). 5) G. A. Bertero et al., IEEE Trans. Magn., 38, 1627 (2002). 6) K. K. Tham et al., J. Appl. Phys., 112, 093917 (2012).

Fig. 1 M/M_s -H loops of media with CoPt-RE oxide (RE oxide: Gd₂O₃, Nd₂O₃, and Sm₂O₃) CLs (9 nm) deposited on CoPt-B2O3 GRL (16 nm). For a reference, M/Ms-H loop of CoPt-B2O3 GRL (16 nm) without CL is also shown in broken line.

Fig. 2 ADF-STEM image for a medium with CoPt-B2O3 GRL and CoPt-Gd2O3 CL. EDX element analysis of Gd, O, Co, Pt are included in the figure.

磁気複屈折測定と定量 NMR 測定を利用した モンモリロナイトへの NIPAm の吸着評価

山登正文、小峰一将、宮崎貴大、川上浩良 (首都大院都市環境)

Study in adsorption of NIPAm on Montmollironite using magneto birefringence measurements and quantitative NMR measurement M. Yamato, K. Komine, T. Miyazaki, H. Kawakami (Talaca Metra, Ukia)

(Tokyo Metro. Univ.)

<u>はじめに</u>

クレイと polyNIPAmから形成されるナノコンポジットゲルは 優れた機械特性を示すことが知られている¹⁾.ナノコンポジット ゲルではクレイに NIPAm分子が物理吸着した結果,クレイが架 橋点として働いていると考えられているが²⁾,その吸着の詳細は 不明である.そこで定量 NMR 測定を用いて NIPAmのクレイへ の吸着等温線を作成し,磁気複屈折測定からクレイに対する NIPAm 分子の吸着様式について検討したので報告する. **実**時

<u>実験</u>

試料:モンモリロナイト(MMT)にはクニピアG(クニミネ工 業社製)を用いた.遠心分離により MMT を分級しサブミクロン オーダーの MMT を用いた. MMT 分散液に NIPAmを所定量溶解 させて磁気複屈折測定と定量 NMR に用いた.

磁気複屈折測定:分光型磁気複屈折装置を試作し,磁場内での リタデーションの定量化を可能にした.

定量 NMR:標準試料には純度 99.8%の DSS-d6 を用い, 25℃で 定量 NMR 用シーケンスを用いて測定を行った.得られた NIPA m濃度は平衡濃度であるので,仕込み濃度との差から吸着量を算 出した.

結果および考察

Fig.1 に得られた吸着等温線を示した. 平衡濃度の増加に伴い, 吸着量は増大し, 平衡濃度が1 M 程度では12~13 mmolg⁻¹の吸 着量となった. この吸着量が MMT の表面に単層で吸着している と仮定すると吸着断面積は 0.1 nm² と求められた. この値は NIPAm 分子の大きさに比べると小さく, NIPAm は MMT に多層 吸着していることが示唆された.

Fig.2 に磁気複屈折測定で得られたリタデーションと吸着量の 関係を示す. 吸着量の増加に伴い Re は単調に減少した. Re の 減少は MMT に対して複屈折を減少させる配向様式で NIPAm が 異方的に吸着していることを意味している.また,ほぼ直線的に 変化していることから吸着量によって配向様式が変化していな いことを示唆している.ゲル化させる濃度では多層吸着していお り,このような吸着状態から重合反応が進行することで MMT は NIPAm に高密度で取り囲まれた構造となり,ナノコンポジット ゲルの優れた力学特性につながっていると予想される.

参考文献

1) K. Haraguchi, T. Takeshita, *Adv Mater*, **14**, 1120-1124 (2002).

2) K. Haraguchi, T. Takeshita, S. Fan, Macromolecules, 35, 10162-10171 (2002).

Fig.1 Adsorption isotherm of NIPAm on MMT at 25°C.

Fig.2 Relationship between Re in a magnetic field of 10 T and amount adsorbed of NIPAm at 25° C.

25pPS - 27

放射光光電子顕微鏡を用いた

磁気ドットのハイスループット解析

木村 恵太¹, 西尾 直¹, 沖 直人¹, 山本 雅大¹, 角野 知之¹, 大河内 拓雄², 小嗣 真人¹ (1. 東京理科大学, 2. JASRI)

High throughput analysis of magnetic dot array by PEEM Keita Kimura¹, Tadashi Nishio¹, Naoto Oki¹, Masahiro Yamamto¹, Tomoyuki Kadono¹, Takuo Ohkochi², Masato Kotsugi¹ (1.Tokyo Univ. of Sci , 2.JASRI)

<u>背景</u>

近年、省エネルギーデバイス開発を背景として、磁気渦構造の磁気ドットを用いたデバイスが提案されて いる^山。磁気ドットは形状磁気異方性が強く影響するため、形状磁気異方性の効果を最適化する必要がある。 しかし、磁気ドットの作製及び解析には多大な労力と時間が必要になる。特に、磁気ドットの磁区構造を解 析するためには、高い分解能が要求される。そこで我々は、物理パラメータの異なる試料を一括作製するコ ンビナトリアル合成と放射光光電子顕微鏡を活用した磁気ドットの効率的な作製及び解析手法の検討を行 った。実験的には、コンビナトリアル合成を用いて様々な形状の磁気ドットを一括で作製した。解析には放 射光光電子顕微鏡を用いることで、高分解能かつ網羅的に磁区構造解析を行った。加えて、マイクロマグネ ティクスによる理論計算を行い、実験データとの比較を行った。当日は、この結果について報告する。

<u>実験方法</u>

SiO₂/Si 基板上に DC マグネトロンスパッタを用いて膜厚 45 nm のパーマロイ薄膜を作製した。ドットは マスクレスフォトリソグラフィを活用し、直径 8.07 μ m から 2.37 μ m の円盤型ドットを網羅的かつ自動的 に作製した。なお露光時間は 300 s とした。磁区像構造解析は SPring-8 の BL17-SU に設置されている光 電子顕微鏡を用いた X 線磁気円二色性測定 (XMCD-PEEM) により磁気構造を取得した。なお XMCD-PEEM には Fe のL吸収端を用いた。理論計算には Mumax³を用いて行った。

<u>結果及び考察</u>

Figure 1 に直径 5.36 µm のドットの XMCD-PEEM による磁区像を示す。この磁気ドットは、典型的な磁気渦構造となることが確認された。Figure 2 に直径 4.51 µm から 4.21 µm のドットの XMCD-PEEM による磁区像を示す。これらのドットでは多磁区構造が確認された。また、更に小さい直径 3.88 µm のドットでは磁気渦構造であることが確認された。多磁区構造となった要因として、エッジ部分による形状磁気異方性の寄与が考えられる。また、理論計算の結果が実験データで観察された振る舞いと定性的に一致することを確認した。当日は、理論計算と実験データの比較についてより詳細に報告する予定である。

Fig.1 Magnetic domain for Py dot with a diameter

of 5.36 μm by XMCD-PEEM measurement

Fig.2 Magnetic domain for Py dots with diameters of 4.51 µm to 4.21 µm by XMCD-PEEM

参考文献

[1] W. Zhou et. al., Phys. Rev. B, 220401(R), (2016)