横方向磁束型スイッチトリラクタンスモータの試作試験

小森谷 太希,伊藤 裕貴,中村 健二 (東北大学)

Prototype Tests of Transverse-Flux-type Switched Reluctance Motor T. Komoriya, Y. Ito, K. Nakamura (Tohoku University)

はじめに

我が国においては、総発電電力の約6割がモータ で消費されている現状から、小型高出力で高効率な 希土類磁石モータの需要が増大している。その一方 で、希土類は高価であり、資源も偏在していること から、希土類が不要なモータに対する期待も高い。

スイッチトリラクタンスモータ(SRM)は、構成 が簡単で堅牢、かつ永久磁石が不要であることから 応用範囲の拡大が期待されている。ただし、希土類 磁石モータと比べて、一般にトルクや効率は劣るな どの欠点がある。

これまで筆者らは、アキシャルギャップ型など、 構造の工夫による SRM のトルク向上に関して、様々 な検討を行ってきた¹⁾。本稿では、新たに横方向磁 東型 SRM (Transverse- Flux-type SRM: TFSRM) に着 目し、3 次元有限要素法 (3D-FEM) による解析・設 計と、実証機の試作・試験を行ったので報告する。

TFSRM の基本構成と試作試験結果

Fig.1に、3相TFSRMの基本構成を示す。各相は 固定子、回転子ともに同数のC形コアと、固定子コ アの内側に収められたトロイダルコイルからなり、 これを電気角で120度ずつ空間的位相をずらして、 軸方向に積み重ねることで構成される。TFSRMはC 形コアを用いることから、一般的な無方向性ケイ素 鋼板ではなく、より飽和磁束密度の高い方向性ケイ 素鋼板が使用でき、コイルもトロイダル形状である ことから巻線占積率を高めることができる。したが って、通常のラジアルギャップ型SRMよりも大き なトルクが得られることが期待される。

Fig. 2 に, 3D-FEM を用いて設計した TFSRM の試 作機の外観と諸元を示す。モータの相数や極数など の基本構成は, Fig. 1 に示したものと同一である。

Fig. 3 に、トルク対速度特性を示す。この図を見ると、ほぼ設計通りであることがわかる。一方、Fig. 4 の電流密度対トルク特性を見ると、軽負荷領域では設計通りであるのに対して、負荷の増大に伴い、誤差が拡大していることがわかる。これは 3D-FEM において無視した、C 形コアの支持構造や相間干渉の影響であると考えられる。今後は、上記影響の評価と改善策について検討を行う予定である。

参考文献

1) 小野, 中村, 一ノ倉, "アキシャルギャップ型 SR モータの 構成に関する基礎的検討", 日本磁気学会誌, **35**, 106 (2011)

Fig. 1 Basic configuration of TFSRM.

Fig. 2 Specifications of a prototype TFSRM.

Fig. 3 Comparison of torque versus rotational speed characteristics.

冷却ファン用高速回転モータの高効率化に関する検討

川村恭平,中村健二,一ノ倉理,*後藤博樹,**郭海蛟 (東北大学,*宇都宮大学,**東北学院大学) Efficiency Improvement of High-Speed Cooling-Fan Motor K. Kawamura, K. Nakamura, O. Ichinokura, *H. Goto, **H. J. Guo (Tohoku University, *Utsunomiya University, **Tohoku Gakuin University)

はじめに

エネルギー変換システムの代表格であるスイッチ ング電源やモータドライブシステムは、常に小型高 出力化が強く求められているが、出力密度の向上に 伴い、局所的な損失の増大と、それに伴う発熱の問 題が顕在化している。エネルギー変換システムにお ける冷却手段としては、ファンによる強制風冷が一 般的であるが、従来、これらのファンに用いられる モータはコストが最優先であったため、いわゆる矩 形波駆動方式が採用され、効率も決して高く無い。 一方で、冷却ファン用モータは常時駆動し続けるこ とから、その効率改善はシステム全体の省エネルギ ー化に寄与するところが少なくない。

本稿では、今後重要視されることが確実な冷却フ アン用モータの高効率化について、モータ構造の観 点から検討を行ったので報告する。

2種類の冷却ファン用モータの性能比較

本稿では、冷却ファン用モータとして、2 種類の 永久磁石モータを設計し、比較検討を行った。なお、 設計目標は回転数を 12600 rpm、トルクを 200 mN·m とし、駆動は従来の矩形波では無く、高効率化のた め、電流ベクトル制御による正弦波駆動を想定した。

Fig. 1 および Fig. 2 に, 設計した表面磁石型(SPM) と埋込磁石型(IPM)のモータの諸元を示す。どち らも3相6スロット4極のインナーロータ型であり, 体格や巻線の仕様は同一である。また,高速回転に 伴う磁石渦電流損を抑止するため,ネオジムボンド 磁石を採用した。ただし,磁石性能という観点から 見ると,ネオジム焼結磁石には劣るため,SPM モー タについては,一般的な径方向着磁では無く,極異 方性着磁を採用した。一方,IPM モータについては, 磁石を2層とすることで,リラクタンストルクを増 大させる工夫を施した。これらのモータについて,3 次元有限要素法を用いて,特性の算定を行った。

Fig. 3(a)に、電流密度対トルク特性の算定結果を示 す。この図を見ると、目標トルク到達時の電流密度 は SPM モータの方が低いことがわかる。一方、同図 (b)の損失特性を見ると、銅損は SPM モータの方が 低いが、それ以上に鉄損が大きいことがわかる。そ のため、Fig. 4 の効率は IPM モータの方が、特に軽 負荷側で上回っていることが了解される。

Fig. 1 Spesifications of an SPM motor.

Fig. 2 Spesifications of an IPM motor.

(a) Torque characteristics (b) Loss characteristics Fig. 3 Comparison of basic characteristics of the SPM and IPM motors.

Fig. 4 Efficiency comparison of the SPM and IPM motors.

磁性塗布線を用いた近接効果に起因する交流抵抗の低減

鳥島健太,山本達也,卜穎剛,水野勉,本田祐樹* (信州大、*日立金属株式会社) Reduction of AC resistance caused by proximity effect using magnetocoated wire K.Torishima, T.Yamamoto, Y.Bu, T.Mizuno, Y.Honda (Shinshu Univ., *Hitachi Metals, Ltd.)

<u>はじめに</u>

電気電子機器は回路の駆動周波数を高周波化することで小型化,軽量化が図られている。しかし,駆動周 波数の高周波化に伴い銅線では表皮効果,および近接効果に起因する抵抗が増加する¹⁾。そこで,筆者らは 近接効果に起因する抵抗を低減するために磁性塗布線(Magnetocoated wire 以下, MCW)を開発した。本論文で は MCW でコイルを製作し,インピーダンスの測定結果について報告する。

<u>コイルの構造</u>

銅線(Copper wire 以下, COW)と MCW を用いたコイルを製作した。Fig.1 に COW と MCW の断面図を示した。MCW は銅(Cu)線の外周に磁性層が設けられている。磁性層にはファインメット[®] (FT-3)とポリイミドを 混合した磁性コンポジット材料を使用した。Fig.2 にコイルの構造図を示した。広い周波数範囲における抵抗 低減効果を確認するために, 巻数 N = 9, 144 の 2 つのコイルを製作した。

<u>測定結果</u>

Fig.3にコイルの抵抗-周波数特性の実測値を示した。9回巻のコイルにおいて,周波数1MHzのときのCOW, MCWの抵抗は、それぞれ311mQ、211mQであった。COWの抵抗と比較して、MCWの抵抗は32.1%低減した。また144回巻のコイルにおいて、周波数10kHzのときのCOW、MCWの抵抗は、それぞれ5.0Q、4.0Qであった。COWの抵抗と比較して、MCWの抵抗は20.0%低減した。上述の抵抗の低減は磁性塗布線の近接効果の抑制に起因する。磁性塗布線は10kHzから1MHzの幅広い周波数範囲において交流抵抗が低減した。

参考文献

 T.Mizuno, S.Enoki, T.Hayashi, T.Asahina, and H.Shinagawa : Extending the Linearity Range of Eddy-Current Displacement Sensor With Magnetoplated Wire, IEEE Transactions on Magnetics, Vol.43, No.2, pp543-548(2007)

有機インターポーザ内蔵 LLC 共振型 DC-DC コンバータ用 磁性微粒子複合材料磁心トランスの基礎検討

岡 亮太郎, 白澤 智寛, 石田 嵩, 秋山 知輝, 佐藤 敏郎, 曽根原 誠 (信州大学)

Fundamental study of a magnetic particle composite core transformer for the LLC resonance DC-DC convertor embedded in an organic interposer R. Oka, T. Shirasawa, S. Ishida, T. Akiyama, T. Sato, M. Sonehara (Shinshu University)

はじめに

パソコンや携帯電話の高性能化・多機能化に伴い、それらに搭載される LSI は低電圧かつ大電流で駆動しているが、電源と LSI 間の配線における損失の増大が問題となっている.この問題の解決策の一つとして、 電源回路を LSI パッケージに内蔵する手法が挙げられ、小型化できる利点もある¹⁾.

著者らは、大きな降圧比が期待でき、かつ数十 MHz スイッチング周波数の LLC 共振型 DC-DC コンバータ に注目し、その有機インターポーザ内蔵を目指している.本稿では、その基礎検討として磁性微粒子複合材 料磁心トランスの電磁界解析の結果について述べる.

解析方法

磁性微粒子複合材料磁心トランスの電磁界解析には、完全 3 次元 Full-wave 電磁界解析ソフトウェア (ANSYS; HFSS)を用いた.解析空間は、60 mm³の十分広い自由空間を設定し、Fig. 1 に示すような LSI イ

ンターポーザ基板の積層工程で作製可能なトランスについて解 析した.トランスは磁性微粒子複合材料シート内に埋め込まれ ている構造になっており,既報の有機インターポーザ内蔵プレ ーナインダクタと同様な構造である^{2),3)}.複合材料には,高い比 透磁率を有する鉄系アモルファス合金粉/エポキシ複合材料シ ートを想定した.また本稿では,一次巻線と二次巻線の間(Fig. 1 (c)における赤枠線内)の複合材料シートの有無について比較 した解析結果を述べる.

解析結果

LLC 共振型 DC-DC コンバータに本トランスを利用するにあ たり,結合係数 k は重要である.本解析では,一般的な LLC コ ンバータのトランスにおける k である 0.9 程度を目標とした. Fig. 2 に本トランスにおける一次巻線と二次巻線の間の複合材 料シート有無の k の周波数特性を示す.同図より,一次巻線と 二次巻線の間が複合材料シートでない非磁性のラミネーション シートの方が複合材料シートとするよりも k が高くなることが 分かった.これは一次巻線から生じる磁束と二次巻線から生じ る磁束が互いに打ち消し合い, k が低減したと考えられる.以 上より,一次巻線と二次巻線の間を非磁性シートにすることで 目標の k が得られる可能性があり,今後はこの構造を基に有機 インターポーザ内蔵 LLC 共振型 DC-DC コンバータの開発を進 める予定である.発表当日は,詳細な解析結果について述べる.

参考文献

- 1) H. Kobayashi, et al.: JMSJ, 37, 4, 314-319 (2013).
- 2) Y. Sugawa, et al.: IEEE Trans. Magn., 49, 7, 4172-4175 (2013).
- 3) Y. Yazaki, et al.: IEEE Trans. Magn., 50, 11, #8401304 (2014).

(c) Cross-sectional view Fig. 1 Schematic view of analysis model in magnetic particle composite core transformer.

Fig. 2 Analysis results of frequency dependence of coupling coefficient k in the transformer.

磁気機能性流体による平面研磨用工具の設計

池田愼治,松葉寿明*,藤平晃太朗*,山本久嗣*,西田 均* (公立小松大学,*富山高等専門学校)
Design of Micro Processing Tools for Flat Plate Utilizing Magnetic Functional Fluid S. Ikeda, T. Matsuba*, K. Fujihira*, H. Yamamoto*, H. Nishida* (Komatsu University, *National Institute of Technology Toyama College)

はじめに

磁気混合流体(MCF)はナノ、マイクロオーダーの磁性微粒子を分散させた感磁性コロイド溶液である。 MCF に非磁性砥粒を混合した上で、磁界によって微粒子を磁気クラスタ化し、加工対象面に対して摩擦運動 させ、精密加工を行う¹⁾²⁾。優れた加工特性が見出されている半面、効率的な工具設計の手法は確立されていな い。工具形状の工夫とその効果について、磁界数値解析により明らかにすることを目的とした。

数値解析の方法と結果

本研究の対象は、平面を対象とした精密加工である。この加工の様子を Fig.1に示す。加工工具は先端を円錐状に絞った形状で、先端は半径2.5 mm の平面である。先端を細くすることにより、狭い領域の加工が可能となる一 方で、磁路としての磁気抵抗が大きくなり、回転運動による加工距離も短く なるため加工能力は低下する。よって、これらのトレードオフを踏まえた工 具設計が重要となる。

先端のテーパ形状を変えて、微細加工を可能としつつ加工能力を高めることを目的として、磁界数値解析を行った。工具先端外周近傍(r=2.5)およびテーパ部上端近傍(r=10.05)の磁束密度をFig.2に示す。

これまでの研究により、加工面における磁東密度が最大となるのは、工具 先端の平面部の外周近傍であり、外周の外側の領域で加工量が最大であるこ とが明らかとなっている。また、加工に必要な MCF を保持するために必要 な磁東密度は、加工面において 0.18 T 程度あれば十分と見積もられている。 テーパ長を 5.0 mm の短テーパとした工具による実験の結果、工具先端以外

保持された MCF は加工に寄与しないため加 工量は低下した。これは工具先端よりテーパ 上端部の鈍角部に磁束が集中し、ここに多く の MCF が保持されるためであることが Fig.2 の計算結果より裏付けられた。

今後、微細加工と良好な加工量を両立でき る工具の設計を可能とするよう、検討を進め る予定である。

参考文献

- Fig.2 Magnetic flux density of edge part of polishing tools.
- 1) H. Nishida, et. al., Journal of JSAEM, Vol 22, pp.286-292 (2014)
- 2) Hitoshi Nishida, et. al., Journal of JSEM, Vol. 12, No. 4, pp.361-368 (2012)

density [T]

Flux