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1. Introduction 
  Ferromagnetic materials are used in the drive motors of electric vehicles. NdFeB magnets are used on the rotating 
part (or “rotor”) of drive motors and electrical steel is used on the stationary part (or “stator”). In terms of magnetic 
properties, NdFeB magnets are classified as hard magnetic material and electrical steel as soft magnetic material. 
Electrical steel has two magnetic characteristics. One is that iron loss (sum of hysteresis and eddy current losses) is low 
during transformation between electrical and magnetic energies. The other is that high magnetic flux densities are 
obtained even if low magnetic fields are applied to the soft magnetic materials. We previously reported that we 
performed micromagnetic numerical simulations of magnetic domain structures in electrical steel 1). Calculation models 
were assumed to be grain-oriented electrical steel (GOES) for transformer cores with an anisotropy field at 20 kA/m. 
Magnetization reversal in the GOES occurred by applying a DC magnetic field of 8 kA/m. This DC magnetic field was 
less than half of the anisotropy field but experimentally equals zero, which corresponds to the coercivity (Hc) of the 
GOES. Therefore, the DC magnetic field used for the micromagnetic numerical simulations was larger than expected. 
In this report, we describe issues with using electrical steel in simulation models, and we compare MH-loops between 
soft and hard magnetic materials to clarify what the issues with the micromagnetic numerical simulations for soft 
magnetic materials are.   

2. Micromagnetic numerical simulation 
   In this simulation, a dynamic magnetic reversal process was calculated using the Landau–Lifshitz–Gilbert equation 
as follows:  
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 where, M is magnetization and Ms is saturation magnetization 2). Heff is an effective field, which is the sum of an 
external, static, anisotropy, and exchange fields. γ is the gyromagnetic ratio and α is the damping factor.  
  In our calculations of MH-loops, a model of magnetic material contained 16 16 16 cubic cells that were 3 nm 
long. The Ms was 1.0 T, the intercell exchange stiffness constant was assumed to be 1.0 11-11 J/m, and the damping 
constant was 0.02. The cells have uniaxial magnetic anisotropy, which aligned in one direction. The anisotropy field 
(Hk) was changed from 10–300 kA/m. The external field was defined by a cosine function, of which the frequency was 
25 MHz.  

3. Results and discussions 
  Table 1 compares the magnetic characteristics of soft and hard magnetic materials. Magnetic domain wall width (σ) 
and exchange length (ρ) are given as 
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where A is the exchange stiffness constant and Ku is the anisotropy constant. The soft magnetic materials are referred to 
as GOES and non-GEOS; the hard magnetic materials are referred to as NdFeB for motors and CoCr alloy for hard disk 
drives. The cell sizes of simulation models are defined by exchange length; the cell sizes must be equal to or less than 
the exchange length for the NdFeB and CoCr alloy. We must consider the cell size and magnetic domain width for 
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GOES or non-GEOS. The exchange length cannot be calculated and the cell size cannot be determined because the 
magnetic domain wall width and the exchange stiffness constant are unknown. If the magnetic domain wall width is on 
the order of 10 nm—which equals 100–150 atoms—the intercell exchange stiffness constant is 2  10-13 J/m and the 
exchange length is about 4.5 nm. Therefore, the cell size should be smaller than 4.5 nm. However, the number of the 
cell is needed more than 20,000 in the direction of magnetic domain width, because the magnetic domain width is over 
100 μm for GEOS. Therefore, simulations of GEOS are very difficult because they are time-consuming and require a lot 
of memory. As the cell increases in size, simulations of the motions of the magnetic moments in the magnetic domain 
wall are not precise.  
  Next, we compared MH-loops between soft and hard magnetic materials to clarify what the issues with the 
micromagnetic numerical simulations of the soft magnetic materials are. The magnetic materials were assumed to be 
small, as mentioned in Chapter 2. Figure 1 shows the relationship between Hk and Hc, calculated from MH-loops. The 
graph in Fig. 1 shows that when the Hk was higher than or equal to 100 kA/m, the Hc was proportional to the Hk. When 
the Hk was lower than 100 kA/m, the Hc was about 30–40 kA/m. In particular, when the Hk was lower than 20 kA/m, the 
Hc was larger than Hk. This might be due to the equilibrium between the exchange and static magnetic fields.  

We have to solve the above issues in order to simulate soft magnetic materials using a micromagnetic numerical 
simulation.  
 
Table 1 Comparison of magnetic characteristics of soft and hard magnetic materials.  

GOES > 100 μm
Non-GOES > 10 μm
Nd-Fe-B 200 1000 (nm) - 4.4 1.6 5 × 106 6000 1 × 10-11 1.4 2

CoCr alloy  10 (nm) - 10.0  1.0  1 × 106 2000 1 × 10-11 3.2 1 10

K u  (J/m3) H k  (kA/m)
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constant J/m)

Cell size
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Magnetic
domain
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Fig. 1 Anisotropy field dependence of coercivity. 
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Polycrystalline Magnetic Field Analysis of Electrical Steel  

for Magnetic Multi-Scale 

Keisuke Fujisaki 

(Toyota Technological Institute) 

Electrical steel is mainly used for electrical motor core or transformer due to high magnetic performance and mass 

production technology. It is polycrystalline material where each crystal has some magnetic domain with saturated 

magnetization. So it is said to be an important role between magnetic domain and electrical motor in magnetic 

multi-scale problem. Usually its calculation model of magnetic analysis should be carried out by magnetic domain 

model such as LLG or so. However, since electrical steel of polycrystalline has a lot of magnetic domains, when all the 

magnetic domains are considered for numerical calculation, mesh explosion problem will occur. So the polycrystalline 

of electrical steel should be modeled to avoid it. Here, static magnetic field analysis in finite element method is used for 

it in some assumptions that equivalent magnetic material constants are used in homogenized method and coordinate 

transform of magnetic flux density is used1-3). 

Figure 1 shows total coordinates in polycrystalline and local coordinates in each crystal. Magnetic anisotropy of each 

crystal is expressed in local coordinate and continuity of magnetic flux density is expressed in total coordinate4). So the 

coordinate transform between them is carried out. GO (grain oriented steel) material with 56 crystal grains in 80 mm2 

square are used for calculation in comparison with the measured magnetic property. Crystal orientations as α, β, γ 

angles defined in Fig. 1 are well organized and they are centralized within several degrees in average. 

Figure 2 shows comparison of magnetic flux density distribution between 3D polycrystalline magnetic field analysis 

and distributed magnetic measurement4). Fig. 2 (a) is measured magnetic flux density by needle method with some 

square and Fig. 2 (b) is calculation one where magnetic flux density distribution as Fig. 3 (c) is averaged in some square 

of the needle method. The calculation result well expresses the measured one. 

Figure 3 shows comparison of inclination angle of magnetic flux density vector B


 between 3D polycrystalline 

magnetic field analysis and distributed magnetic measurement4). Fig. 3 is the calculated inclination angle which is an 

angle between the easy magnetization direction of the polycrystalline and the magnetic flux density vector, and Fig. 3 

(b) is α angle of each crystal grain. Magnetic flux density is expected to flow in polycrystalline in order to follow each 

crystal orientation. So angle distribution of Fig. 3 (a) and (b) are in good agreement. 
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Fig.1. Total coordinates and local coordinates for polycrystalline magnetic field analysis. 
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Fig. 1. Experimental system for effect of multi-axial stress1). 
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Fig. 2 . Measured variation in losses with multi-axial stress. 
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Fig. 3. Calculated losses by W(1,0) and eq by (1) 

Harmonic Iron Loss Analysis of Rotating Machines:  
Practical Macro Modeling for Stress and Hysteresis 

Katumi Yamazaki 
(Chiba Institute of Technology) 

In this symposium, I present harmonic iron loss analysis of rotating machines that considers effects of multi-axial 

mechanical stress and hysteresis phenomenon by introducing practical macro modeling. 
First, the effect of the multi-axial stress on the loss is investigated by material experiments. An approximated 

modeling, which requires only the measured loss with uniaxial stress, is also introduced. Fig. 1 shows the experimental 

system 1), in which arbitrary 2-axial stress can be imposed on the specimen of an electrical steel sheet by the actuators 

noted 1 and 2. The magnetic field is applied along the direction of the force produced by actuator 1. The specimen is an 

electrical steel sheet with 3% silicon. 

The hysteresis loss and the eddy current loss including 

the excess loss are separated from the measured total 

core losses at 50 Hz and 200 Hz. Fig. 2 shows the results. 

It is revealed that both the eddy current and hysteresis 

losses are affected by multi-axial stress. These losses 

become maximum when the compressive (minus) 1 and 

tensile (plus) 2 are imposed.  

   This experiment cannot be always carried out for 

practical design procedure of rotating machines. 

Approximated modeling is strongly desired. To obtain 

the approximated multi-axial stress effects, the single 

axial equivalent stress eq has been proposed. 

   Following expression was derived under the 

assumption that a same magneto-elastic energy leads to a 

same characteristics of the magnetic materials 2): 



 hheq ..
2

3
s                (1) 

where 


h  is the unit vector along the magnetic field 

direction, s is the deviatoric part of the stress tensor 

expressed by 1 and 2. It is assumed that the variation in 

core loss with single eq along the magnetic field 

direction is identical to that with multi-axial 1 and 2. 

Therefore, the effect of the multi-axial stress can be 

estimated only by (1) and the experiment, in which a 

uniaxial stress is simply imposed along the flux 

direction. 

Fig. 3 shows the calculated variation in the losses only 

from the measured loss W(1,0) by single axial 1 and 

the equivalent stresses. It is confirmed that the calculated 

result well express the measured eddy current and 

hysteresis losses in Fig. 2. 
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Next, a practical hysteresis modeling including 

minor loops is proposed 3). Fig. 4 shows the concept of 

this model. The minor loops are approximately 

determined form the several curves of major loops. Fig. 

5 shows the experimental verification of this model by 

a single sheet test of an electrical steel sheet. The 

accuracy of the model is confirmed. 

   Finally, the proposed material modeling is applied 

to the loss calculation of a 100 kW class interior 

permanent magnet synchronous motor driven by a 

PWM inverter (5 kHz carrier). The 2D finite element 

analysis is carried out due to following equation. 

avehysaveeddy ,,

1
HHA 











  (2) 

where is the permeability, A is the magnetic vector 

potential, Heddy,ave and Hhys,ave are the reation field 

caused by the eddy currents and hysteresis 

phenomenon in the core, which are averaged along the 

thickness of electrical steel sheets. Heddy,ave is 

determined by coupling 1D nonlinear time stepping 

analysis along the thickness of the electrical steel sheet 

in the core. Hhys,ave is determined by the presented 

hysteresis model by considering the effect of the stress 

due to (1). 

    Fig. 6 shows the calculated flux density 

waveform at the top of a stator tooth of the motor. The 

waveform includes high-frequency carrier harmonics. 

Fig. 7 shows the calculated hysteresis loops, which 

includes a considerable number of minor loops. It is 

observed that the differential permeability of the minor 

loops is considerably smaller than that of the B-H 

curve used in the conventional analysis. Fig. 8 shows 

the experimental and calculated iron losses. The 

accuracy is improved by the proposed method due to 

the correct estimation of skin effect. 
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Homogenization Techniques for Laminated Core and Soft Magnetic 

Composites in Magnetic Field Analysis 

Kazuhiro Muramatsu 

Department of Electrical and Electronic Engineering, Saga University, Saga 840-8502, Japan 

1. Introduction 

In electrical machines, laminated cores and soft magnetic 

composites (SMCs) are often used in order to reduce the 

eddy current losses. In the magnetic field analysis of such 

machines, the cores are usually modeled by solid ones in 

order to save computation cost. To take account of the 

nonlinearity and the eddy currents in steel plates or particles, 

and the gaps between them in the solid core model, 

homogenization techniques 1), 2) are applied. In this paper, 

the homogenization techniques for laminated core and 

SMCs are described. 

2. Homogenization Technique 

The flowchart of the homogenization technique for 

laminated core or SMCs is shown in Fig. 1. The 

sub-analysis with the cell model of a steel plate or particle is 

carried out for each element ie in the core at each nonlinear 

iteration in the 3D nonlinear eddy current analysis with the 

solid core model (“main-analysis”). In the sub-analysis, the 

flux densities obtained from the main analysis are given and 

the effective permeability used in the main analysis is 

calculated taking account of the nonlinearity, the eddy 

currents, and the gaps. 

3. Laminated Core  

In the sub-analysis of the homogenization technique for 

the laminated core, one sheet of steel plate with the gap is 

chosen as the cell model, shown in Fig. 2, and the 1D 

nonlinear eddy current analysis is carried out.  

The homogenization technique is applied to a simple 

reactor model 3) shown in Fig. 3. The cores with gaps are 

constructed by laminated steel plates (35A270) in the 

z-direction, and the space factor F is 0.95.  

The flux distributions in the leg in the y-z plane obtained 

from the ordinary method, neglecting the eddy currents in 

the steel plates and gaps between the steel plates, and the 

proposed method mentioned above are shown in Fig. 4. The 

flux distribution obtained from the ordinary method is 

almost uniform in the core, whereas the flux densities in the 

upper layers of the core are larger than those in the other 

lower layers in the proposed method. This is because the 

flux concentrates at the corners of cores due to the gaps 

between cores and the larger flux in the upper layers 

remains due to the gaps between the steel plates. Therefore, 

the proposed method should be used for the accurate 
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analysis of the laminated core.  

4. Soft Magnetic Composites (SMCs)  

To establish the homogenization technique for SMC, the 

accurate cell model of a particle with gap is investigated4). 

Fig. 5 shows a 3D cell model for an actual SMC (MBS-R3, 

DIAMET CORPORATION). In this model, the particles are 

assumed to be square shape and be formed regularly and 

infinitely. Two configurations of particles with uniform and 

un-uniform gaps are examined as shown in Fig. 5 (a) and (b), 

respectively. In the model with the uniform gap, two gap 

lengths G0s are selected. One is G0s = 1.37 µm determined 

by volume filling rate. The other is set to be G0 = 0.35 µm 

so that the calculated magnetic field Hz coincides with 

measured one at Bz = 1T. In the non-uniform gap model, G1, 

G2, and L in Fig 1 (b) are optimized to be 0.15, 1.0, and 35 

µm so that the calculated BH curve coincides with the 

measured one as possible.  

Fig. 6 shows the calculated and measured effective initial 

BH curves in the low frequency in which the eddy current 

can be neglected. In the model with uniform gap G0 = 1.37 

µm, the calculated effective permeability is much smaller 

than the measured one because the gap length determined by 

the filling ratio is larger than most of those in the actual 

SMC due to its complex shape of particles. The model with 

the smaller uniform gap G0 = 0.35 µm cannot represent the 

measured BH curve completely, too. The BH curve obtained 

by the optimized model with non-uniform gap is good 

agreement with the measured one. It can be concluded that 

the cell model with non-uniform gap should be used for the 

homogenization technique of SMC. 

Fig. 7 shows the comparison of the calculated iron losses 

obtained by using the cell model shown in Fig. 5 (a) with 

the measred ones. The calculated hysteresis losses are in 

good agreement with the measured ones because the applied 

flux density coincides with each other. However, the eddy 

current losses are different from measured ones because the 

insulation between particles are not completed in an actual 

SMCs. This problem will be investigated in future. 
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Magnetic Material Modeling and Simulation Technology for Loss 

Calculation 

A. Furuya, Y. Uehara, K. Shimizu, J. Fujisaki, T. Ataka, T. Tanaka, H. Kawano* and H. Oshima* 

(Fujitsu Ltd., *Fujitsu Laboratories Ltd.) 

Soft magnetic materials such as an electrical steel, ferrite core, and dust core are widely used in an inductor and 

transformer. To achieve high efficiency and downsizing, a simulation technology for accurate core loss is highly 

demanded in the industry. However, core loss is strongly related to complex magnetization dynamics, and magnetic 

material modeling is one of the recent fields in which progress is being made. In this presentation, we introduce a 

magnetic material modeling technique based on micromagnetics for electrical steel, and microstructure for ferrite core. 

For electrical steel, hysteresis loss accounts for a large portion of core loss of motors. In addition, vector property due 

to grain structure is observed in B-H loop measurement. To model this property, we adopted a grain magnetics (GM) 

model(1). Fig. 1 shows the conceptual diagram of the GM model. The magnetization of one grain is approximated by 

one magnetization vector. This formulation cannot treat a domain-wall and its related dynamics, and therefore, artificial 

magnetization change such as magnetization flip is introduced. Fig. 2 shows the simulation results for grain-oriented 

electrical steel. Anisotropic B-H loops are well-reproduced by considering the effect of domain-wall motion and crystal 

anisotropy. 

 For high frequency applications, soft ferrite cores are an important material, but these core losses are strongly related 

to eddy-current, dimensional resonance, and excess loss due to the magnetization dynamics. To evaluate core loss of 

Mn-Zn ferrite, we studied the magnetic field simulation with the effective permittivity that comes from the 

microstructure of Mn-Zn ferrite(2). Fig. 3 shows the simulation result of core-size dependence of complex permeability. 

The core sample with diameter size 12.7 mm has a clear peak in its real part due to the dimensional resonance. In this 

presentation, we will discuss the comparison of core loss with experimental measurement and loss mechanism. 

 

 

 

  

Fig. 1: Grain magnetics model for electrical steel    

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: B-H loops of grain-oriented electrical steel   Fig. 3: Complex permeability of Mn-Zn core  

Reference 

1) A. Furuya,J. Fujisaki,Y. Uehara,K. Shimizu,H. Oshima, and T. Matsuo, IEEE Trans. on Magn., vol. 

50,(2014),7300604 

2) A. Furuya, Y. Uehara, K. Shimizu, J. Fujisaki, T. Ataka, T. Tanaka and H. Oshima”, IEEE Trans. on Magn., vol. 

53,(2017), 7301004 

13pC  5

 179 



Magnetic properties and variational calculus 

 

Fumiaki Ikeda 
Photon Co., Ltd. 

 

The finite element method is currently the mainstream method in the field of low frequency electromagnetic field analysis.  
In this method, Maxwell's equation, which is a fundamental equation, is formulated using a weighted residual method such 
as the Galerkin method.  This is because the magnetization characteristics of magnetic materials are generally not linear 
with constant magnetic permeability, but have a nonlinear dependence on magnetic flux density. 

In the case of a linear magnetic material, the fundamental equation can be expressed as follows using the variational calculus. 

 
Here μ is permeability and has a constant value.  A is vector potential, and J is current density.  Taking variations, the 
left-hand side becomes as follows. 

 
However, since the transformation of the last formula was performed using Gauss' theorem, a surface integral has appeared.  
Since this surface integral normally disappears through boundary conditions, it is required that the integral of the first term 
be zero, and it is possible to solve the electromagnetic field equation by the variational calculus.   

However, in general magnetic materials, the magnetic permeability is not constant, and so such variational calculus cannot 
be used.  Therefore, when dealing with these kinds of magnetic materials using the finite element method, we utilize the 
vector weighting function W to produce the following equation. 

 
If the left-hand side can be transformed using Gauss' theorem and the surface integral eliminated through boundary 
conditions, the formula becomes as follows. 

 
In this study, we show that the variational calculus can be used even for general magnetic materials by considering the 
thermodynamics of the magnetic material, and demonstrate that, in electromagnetic field analysis also, the finite element 
method can be formulated naturally. 

Considering the free energy F of the magnetic material as a function of temperature T and magnetic flux density B, this 
differential can be expressed as follows. 

 
Here, S is the entropy of the magnetic material per unit volume, T is temperature, and H is magnetic field.  From this, the 
thermodynamic variables can be expressed as follows. 

 
Here we introduce the following thermodynamic potential by transforming variables. 

(Surface integral) 
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Calculating this derivative, the following is obtained from Eq. (5). 

 
In electromagnetic field analysis, the magnetic field is often obtained by inputting a current, which corresponds to the 
problem of finding the magnetic flux density for a magnetic field H generated by an electric current.  According to 
thermodynamics, for fixed temperature and magnetic field, this temperature thermodynamic potential is at its minimum at 
equilibrium.  Therefore, the variation of the following integral must be zero if temperature is constant. 

 
Since temperature and magnetic field are here assumed to be fixed, this variation is taken on magnetic flux density, which 
is the other state quantity.  The variation on the left-hand side of this equation is calculated as follows. 

 
When the variations are represented by vector potentials, 

 
The above left-hand side can be further transformed as follows through partial integration using Gauss' integral theorem. 

 
Since the terms of the surface integral can be eliminated by appropriate boundary conditions, the above equation becomes 
as follows. 

 
Although the distribution of the magnetic field cannot be determined, the magnetic field within this integral is subject to a 
rotation operator, and can be converted into current density as follows. 

 
Therefore, the equation obtained from the variational calculus for the thermodynamic potential, which is required from 
thermodynamics, is as follows. 

 
From equation (6), we can see that this formula is equivalent to the electromagnetic field analysis equation. 

Here, by examining the magnetic material thermodynamically, we have shown that magnetization characteristics can be 
expressed by thermodynamic potentials such as free energy, and that the variational calculus can be used in the finite element 
method for the electromagnetic field. 

 

(Surface integral) 
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Issues of Material Modeling in Electromechanical Simulations 

Takashi Yamada1, Katsuyuki Narita1, Hiroyuki Sano1 
(1JMAG division, JSOL Corp.) 

Many electrical devices are re-designed today in the electrification. Since the electrification is mainly for 
energy saving or the global warming countermeasures, high energy efficiency is primary requirement of the 
re-design. A typical example is electric motors of electric vehicles which have to have high energy efficiency 
as well as high power density with which the conventional internal combustion engines must be able to be 
replaced. 
On the other hand, the further improvement is challenging since such electric machines have long history of 
over 100 years and countless efforts have been already made in the history. In order to make a breakthrough, 
advanced simulation technologies such as finite element analysis (FEA) has been introduced and recognized 
as an indispensable tool in the machine developments. Major advantages of FEA are, firstly, virtual 
prototyping where any design ideas can be concretely implemented and evaluated and, secondly, detail 
phenomena in a machine are visualized and investigated. Those advantages give us deep insights in a 
complex system and substantial improvements which are difficult with conventional design approaches 
consisting of empirical equations and real prototyping. 
However, to enjoy the advantages, the simulation has to have enough accuracy. Since main error source of 
today’s FEA is material data, accuracy of the material modeling determines performance of the simulation.  
Hereafter, we focus on losses of lamination steel which is used for core of the electric machines and its 
property largely affects the performance of the machines. More importantly, the property of the lamination 
steel is complex and difficult to be modeled so that we have many remaining issues there. 
The losses of the lamination steel consist of hysteresis loss, eddy current loss and excess loss. The hysteresis 
loss is a loss defined by loops of static BH characteristic, i.g. it is frequency independent. The eddy current 
loss is caused by the classical eddy current circulating in a cross section which is perpendicular to main 
linkage flux direction. The excess loss is defined as a difference between total losses and summation of the 
hysteresis loss and eddy current loss.  
Most common modeling approaches for loss evaluation today employ an empirical formula such as 
Steinmetz’s equation in which coefficients and parameters are determined with measurements. The 
measurements are usually done with a pure sinusoidal waveform of magnetic flux density. Advantages of the 
conventional approach are, firstly, it is accurate if the actual operating condition is the same as the condition 
of measurements determining the coefficients of the formula and, secondly, it is simple to use since the total 
loss is calculated with a single formula which includes all losses in the above. 
Disadvantage of the conventional approach is the fact that accuracy is never be guaranteed if the 
measurement condition does not match to the actual operating condition. Those undesirable situations are not 
rare in actual machines, especially, in advanced machines such as a traction motor of EVs. Those advanced 
machines are fed with higher current than of the conventional machines to achieve high power density so that 
the lamination steel is magnetically highly saturated and this does not satisfy the measurement condition. 
Also, those advanced machines are controlled with inverter(s) employing Pulse Width Modulation (PWM) 
technique which generates high frequency minor loops on a fundamental major loop. The measurement 
condition does not include the minor loops and the resulting losses cannot represent the minor loop losses. 
The minor loops are generated not only by PWM but also by slot harmonics in a Permanent Magnet 
Synchronous Machine (PMSM) which is the main stream in EVs. Moreover, the measurement has limitation 
in frequency which actual frequency in a machine goes above the limitation. The disadvantage was not a 
significant problem because classical machines are designed to be operated with the low frequency 
sinusoidal waveforms of magnetic flux density. 
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To overcome the disadvantage, new models have been introduced for the hysteresis loss and the eddy current 
loss. The hysteresis loss is represented with Play-Hysteron model1) which is a semi-physical model and can 
reproduce a minor loop at an arbitrary operation point employing multiple static major loops. The eddy 
current loss is modeled by 1D-FEM1) in which eddy current distribution in thickness direction is solved with 
a conductivity of the steel sheet by one-dimensional FEM at each element of the main 2D/3D FEM. Note 
that since only conductivity is required, this method is valid for any frequency without limitation. Those two 
models give us significant improvements in accuracy for the advanced machines3). A significant difference 
from the conventional approach is the fact that the new approach does not depend on measured losses and 
has wider applicability than the conventional approach. 
However, the new approach misses the excess loss is inaccurate in case the excess loss is not ignorable. 
Although the best way to incorporate the excess loss is having a physical model, the phenomena are too 
complex to capture the mechanism. Currently, we are developing an expandable empirical based model as a 
second best. The new model shows reasonable performance for wide range even outside of the 
measurements. The detail will be explained in the presentation. 
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1) T. Matsuo, D. Shimode, , Y. Terada, M. Shimasaki ,"Application of stop and play models to the representation of 

magnetic characteristics of silicon steel sheet", IEEE Transactions on Magnetics, vol.39, no.3, pp. 1361-1364, 2003 
2) O. Bottauscio, “Advanced Model of Laminated Magnetic Cores for Two-Dimensional Field Analysis”, IEEE 

Transactions on Magnetics, vol.36, no.3, pp561-573, 200 
3) K. Narita, H. Sano, T. Yamada, K. Aiso, K. Akatsu, “An Accurate Iron Loss Evaluation Method Based on Finite 

Element Analysis for Switched Reluctance Motors”, ECCE 2015 
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Equivalent circuit for Eddy Current Field in Cauer Form 
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Recently, an exact and efficient modeling method for the eddy current field is found.
1)

 This method expands the eddy 

current field to an equivalent circuit called Cauer Ladder Network (CLN). The procedure for obtaining this network and 

the benefits of this method are introduced here. 

Consider a magnetic sheet shown in Fig. 1, where d denotes the width of the sheet, µ and σ denote the magnetic 

permeability and electric conductivity of the material respectively. It is supposed that exciting field 0H  is applied 

externally. The equation for the eddy current field is given by (1) as an one-dimensional problem. 
2

2

( )
( ) 0

H x
j H x

x



 


. (1) 

Solving this equation under the boundary condition 0( / 2)H d H  gives the magnetic field (2) and the equivalent 

magnetic permeability as (3). 
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   
 . (3) 

Here the complex variable k is defined by k j   and   denotes the total flux in the magnetic sheet. The 

trigonometric function divided by its argument can be expanded by the following two forms, a partial fraction 

expansion (4) and a continued fraction (5). 
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By setting 28 / ,c cR d L    and 2 22 / ( 1 2)cn cL L n   , the effective complex permeability can be respectively 

expanded as 

1

cn c

n c cn

j L R
j

R j L





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
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
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j
j L R j L R


 


   

. (7) 

The former corresponds to the Fourier I expansion and the latter corresponds to the Cauer I expansion. The equivalent 

circuits for these expansions can be realized by the equivalent circuits shown in Fig. 2, Foster realization and Cauer 

realization respectively. These equivalent circuits can be employed for modeling of actual electric machines such as a 

reactor as shown in Fig. 3. In fact, the reactance of this reactor is expressed by j j /L SN l  , where S, N and l 
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Fig. 4.  Bode plots of Foster and Cauer expansions. ( L  ) 

denote the cross section of the laminated core, the coil turns 

and the effective core length respectively. The examples of 

Bode plots with finite truncations of these networks are shown 

in Fig 4, where n denotes the number of the inductors. It is 

obvious that Cauer expansion is much effective than Foster 

expansion. 

Recently, it was found that this Cauer realization can be 

expanded to arbitrary three-dimensional eddy current field as 

illustrated in Fig. 5.
2)

 For preparation, define 

2 2 2 1 2 1

0 0

,n n n n

n n

e h
 

 

 

  E E H H ,. (8) 

2 2 2 2 1 2 1 2 11/ d , dn n n n n nR V L V   
 

    E E H H . (9) 

Then the method is presented by the following steps. 

Step 0: Assume that the voltage v is applied externally. Solve 

0 0 E  under given voltage boundary condition. Set 

0 0 / vE E  and calculate R0 using (9). Set 1 0 H  and n = 1. 

Step 1: Solve 2 1 2 1 2 2n n nR    H Ε  under magnetic boundary conditions. Set 2 1 2 1 2 3n n n   H H H  and calculate 

L2n-1 by using (9). 

Step 2: Solve 2 2 1 2 1(1/ )n n nL    E Η . Set 2 2 2 2n n n E E E  and calculate R2n by using (9). 

Step 3: If the finite sum of (8) converge sufficiently, then stop the calculation. Otherwise set n = n+1 and go to Step 1. 

This method provides the network constants in Fig. 6, and simultaneously provides the spatial distribution functions 

2nE  and 2 1nH . The circuit variables e2n and h2n+1 can be obtained by real-time simulation of the ladder network. The 

magnetic field and the current distribution can be synthesized using (8). Furthermore, the total magnetic energy Wm and 

the power consumption WR in the entire domain Ω are presented in lumped forms as 
2

2

2 1 2 1 2 2 1

0 0

1
,

2
m n n R n n

n n m n

W L h W R h
  

  

  

 
   

 
   . (10) 

In the actual electric machine designs, the nonlinearity and hysteresis property, as well as the anomaly eddy current loss, 

frequently become important issues.
 3)

 The authors hope that the proposed method can be applied to estimate the 

anomaly eddy current loss. However, it may not be so easy because of the moving of domain walls due to the 

fluctuation of the magnetic field. 
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Fig. 6.  Ladder network 
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