Magnetic properties of $L1_0$ -Mn₅₀Ga_{50-x}Al_x epitaxially grown thin films

Keisuke Kamiya^{1,2}, Yoshitomo Tanaka², Siqian Zhao¹, Gary Mankey¹ and Takao Suzuki¹

¹Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, AL, United States ²Materials Development Center & IP HQ, TDK Corporation, Ichikawa, Chiba, Japan

The L1₀-MnGa and –MnAl alloy thin films have received much attention because of their high magnetic anisotropy of the order of 10^7 erg/cm³ at room temperature, for potential applications such as rareearth free permanent magnets. ^{1), 2), 3)} The present work aims to study the magnetic anisotropy mechanism of L1₀-Mn₅₀(GaAl)₅₀ films in conjunction with structure.⁴⁾

Thin films of $Mn_{50}Ga_{50-x}Al_x$ were grown onto MgO (001) substrates by DC magnetron sputtering using $Mn_{50}Ga_{50-x}Al_x$ (x = 0 ~ 20) alloy targets. During deposition, the substrates were heated at around 600 °C. The film thicknesses for all the samples were about 60 nm. The crystal structures of the films were characterized by XRD (Cu K α) and TEM. Measurements of magnetic properties were carried out by VSM and torque magnetometer in fields up to 90 kOe over temperatures ranging from 20 to 300K.

Figure 1 shows the XRD patterns of the films. All the samples possess the c-axis orientation along the film normal and exhibit a (001) super lattice peak of the ordered L1₀ structure. The order parameter S were estimated based on the intensity ratio of $I_{(001)}/I_{(002)}$ to be about 0.9⁴), 0.8, 0.6, 0.4 for x = 0, 5, 10 and 20. Figure 2 shows the temperature dependence of saturation magnetization M_s and uniaxial magnetic anisotropy K_u over a temperature range of 20 to 300 K. It is seen that the K_u decreases rapidly with T than the M_s does. The exponent n in the correlation of K_u \propto M_sⁿ is found to decrease with x from around 2.5 for x= 0 to about 2 for x= 20, as shown in the inserted figure in Figure 3. These results suggest the significant deviation from the single ion-model for the magnetic anisotropy mechanism.⁴

The present work was supported in part by NSF-CMMI (#1229049) and TDK Corporation.

References

- 1) T.J. Nummy et al., Appl. Phys. Lett., 99, 252506 (2011).
- 2) Q.M. Lu et al., Sci. Rep., 5, 17086 (2015).
- 3) L.J. Zhu et al., Chin. Phys. B, 22, 118505 (2013).
- S. Zhao *et al.*, IEEE Trans. MAG. (DOI:10:1109/TMAG 2018.2833800) (in press.).

Fig.1 XRD patterns of Mn(GaAl) films. The data for x=0 is after ref.⁴⁾

Fig.2 Temperature dependence of M_s and K_u for x= 5, 10, 20. The data for x= 0 is after ref.⁴⁾

Fig.3 The correlation between K_u and M_s together with the n values (inset). The data for x=0 is after ref.⁴⁾