FeCoへの VN 添加による正方晶構造の安定化と一軸磁気異方性

長谷川崇,新堀拓哉(院生),中村靖子(院生),武政友佑(院生),及川光彬(院生), 白井千尋(学部生),関勇希(学部生),中川颯太(学部生) (秋田大理工)

Stabilization of tetragonal FeCo structure and uniaxial magnetocrystalline anisotropy by VN addition T. Hasegawa, T. Niibori, Y. Nakamura, Y. Takemasa, M. Oikawa, C. Shirai, Y. Seki, S. Nakagawa

(Akita Univ.)

はじめに

永久磁石や磁気記録媒体の機能向上のためには、高い結晶磁気異方性定数(K_u)と高い飽和磁化(M_s)を兼 ね備えた材料の開発が必須である。筆者らの研究室ではこれまでに、格子ミスフィットが比較的大きな Rh と FeCo の組合せで、Rh バッファ上に FeCo 薄膜をエピタキシャル成長させることで、bcc FeCo 格子に対し て軸比 $c/a \approx 1.2$ の正方晶歪みを導入し、 10^6 J/m³オーダーの高 K_u が得られることを報告している[1]。しかし この格子ミスフィットを利用する手法では、膜厚(t)が 5 nm 程度で格子緩和が生じて元の bcc FeCo に戻っ てしまう。そこで本研究では、第三元素添加による正方晶構造の安定化を目的として、VN 添加を行った。 実験方法

成膜には超高真空多元同時マグネトロンスパッタリング装置(到達真空度~10⁻⁷ Pa)を用いた。膜構成は次の 通りである:MgO (100) substrate/ Rh (t = 20 nm)/ (Fe_{0.5}Co_{0.5})_{90-x/2}V_{10-x/2}N_x ($0 \le x \le 9.6 \text{ at.}\%$, t = 20 nm)/ SiO₂ (t = 5 nm)。Rh と FeCoVN は基板加熱温度が各々300 、200 で成膜した。V 組成は、先の報告で K_u が最大値を示した 10 at.%に固定した[2]。N 添加量は、スパッタガスである Ar と N₂の混合比で制御した。本実験での N₂

の分圧 ($N_2/(Ar + N_2)$) は 0 ~ 50%で変化させた。FeCoV の 組成分析には EPMA、N 組成の分析には XPS を用いた。格 子定数 a 及び c の算出には各々In-plane XRD、out-of-plane XRD を用いた。 K_u の算出には VSM を用いた。

実験結果

Figure 1(a)は、FeCoVN 薄膜(t = 20 nm 固定)の軸比 c/a on組成 (x)依存性である。x に依存して結晶構造は bcc から bct を経て fcc までほぼ連続的に変化している。軸比が 1.05 < c/a < 1.30 の bct 構造は、組成範囲が 1.0 < x < 5.5 at.%で得ら れている。また fcc 構造は、 $x \ge 5.5$ at.%で得られている。 Figure 1(b)は、 K_u のx依存性である。ここには示していない が 1.7 $\le x \le 2.2$ at.%で垂直磁化膜(磁化容易軸が膜面に対し て垂直方向)が得られ、この範囲で K_u は 10⁶ J/m³ オーダー の極大を示している。 K_u の最大値は、x = 2.0 at.%において 1.24×10⁶ J·m⁻³ ($M_s = 1.60$ Wb·m⁻²)が得られた。ここには示 していないが、このような bcc-bct-fcc 変態は、膜厚が 100 nm でも確認された。またアモルファス SiO₂基板上に直接成膜 された膜厚 100 nm の試料でも、 $c/a \approx 1.14$ の bct 構造が得ら れた。以上のことから、FeCo への VN 添加は、将来の永久 磁石応用に向けたバルク化の指針になると考える。

[1] 石尾俊二,長谷川崇 et al. まぐね, 12, 21 (2017).
[2] K. Takahashi et al., J. Phys. D: Appl. Phys. 51, 065005 (2018).

この研究は科研費若手 A (JP15H05518)、NEDO 未踏チャレンジ 2050、ASRC、東北大学金属材料研究所との共同研究 (18K0062)の支援を受けた。

Figure 1. Dependences of (a) c/a ratio and (b) K_u of the MgO (100) substrate/ Rh (t = 20 nm)/ (Fe_{0.5}Co_{0.5})_{90-x/2}V_{10-x/2}N_x ($0 \le x \le 9.6$ at.%, t =20 nm)/ SiO₂ (t = 5 nm) continuous films on the N content x.