Synthesis and spectroscopic analysis of novel ordered alloy with large uniaxial magnetic anisotropy

Masaki Mizuguchi and Koki Takanashi (Institute for Materials Research, Tohoku University, Japan)

A large uniaxial magnetic anisotropy is a fascinating feature for magnetic materials because it gives birth to various intelligent functions. For instance, materials with a large uniaxial magnetic anisotropy are promising for the application to high-density magnetic storage devices since the thermal stability of magnetization is kept even in a nanometer scale. Furthermore, large uniaxial magnetic anisotropy energy (K_u) is one of the crucial matters to realize next-generation strong hard magnets. It is well known that L1₀-ordered alloys such as FePt, CoPt, and FePd show considerably large K_{u} . However, they include noble metals, thus it is an indispensable subject to find a noble metal-free large magnetic anisotropy ferromagnet. It is known that iron meteorites contain L10-ordered FeNi phase, so-called "tetrataenite", which induces unique magnetic properties different from usual Fe-Ni alloys. It has been reported that L10-ordered FeNi has a large K_u of 1.3×10^7 erg/cm³ for a bulk sample¹). However, there have been no studies on the fabrication of L₁₀-ordered FeNi thin films. We have been trying the fabrication of L10-ordered FeNi films by alternate monatomic layer deposition or the sputtering method for several years²⁻¹⁸⁾. In this talk, we present a review on the recent progress of our study on the synthesis and characterization of L10-ordered FeNi films. The maximum value of Ku, which was estimated from magnetization curves, reached 9.0×10^6 erg/cm³. The largest order parameter, which was estimated from XRD spectra, was 0.48. Ku monotonously increased with the order parameter. We also fabricated Ni/Fe superlattices with different layer thickness and investigated their magnetic properties to understand magnetic anisotropy in Ni/Fe system including L10-ordered FeNi. The spectroscopic analysis of the electronic structures of these films by the photoemission spectroscopy (PES) and the magnetic circular dichroism (MCD) measurements were made using a synchrotron radiation. The origin of the large uniaxial magnetic anisotropy will be discussed. In addition, recent progress on the synthesis of L1₀-ordered FeNi bulks by a chemical method will be also presented¹⁹).

This work was partly supported by JST under Collaborative Research Based on Industrial Demand "High Performance Magnets".

Reference

- 1) J. Paulevé et al., J. Appl. Phys. 39, 989 (1968).
- 2) T. Shima et al., J. Magn. Magn. Mater. 310, 2213 (2007).
- 3) M. Mizuguchi et al., J. Appl. Phys. 107, 09A716 (2010).
- 4) M. Mizuguchi et al., J. Magn. Soc. Jpn. 35, 370 (2011).
- 5) T. Kojima, M. Mizuguchi et al., J. Phys.: Conf. Ser. 266, 012119 (2011).
- 6) M. Kotsugi, M. Mizuguchi et al., J. Phys.: Conf. Ser. 266, 012095 (2011).
- 7) T. Kojima, M. Mizuguchi et al., Jpn. J. Appl. Phys. 51, 010204 (2012).
- 8) M. Kotsugi, M. Mizuguchi et al., J. Magn. Magn. Mater. 326, 235 (2013).
- 9) T. Kojima, M. Mizuguchi et al., Surf. Sci. 326, 235 (2013).
- 10) M. Ogiwara, M. Mizuguchi et al., Appl. Phys. Lett., 103, 242409 (2013).
- 11) T. Kojima, M. Mizuguchi et al., J. Phys.: Conden. Matter, 26, 064207 (2014).
- 12) M. Kotsugi, M. Mizuguchi et al., J. Phys.: Conden. Matter, 26, 064206 (2014).
- 13) T. Kojima, M. Mizuguchi et al., J. Phys. D, 47, 425001 (2014).
- 14) T. Tashiro, M. Mizuguchi et al., J. Appl. Phys., 117, 17E309 (2015).
- 15) K. Mibu, M. Mizuguchi et al., J. Phys. D, 48, 205002 (2015).
- 16) T. Kojima, M. Mizuguchi et al., Thin Solid Films, 603, 348 (2016).
- 17) K. Takanashi, M. Mizuguchi et al., J. Phys. D, 50, 483002 (2017).
- 18) T. Tashiro, M. Mizuguchi et al., J. Alloys Compd. 750, 164 (2018).
- 19) S. Goto, M. Mizuguchi et al., Scientific Reports, 7, 13216 (2017).