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Fig. 1.  Magnetic sheet 
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(a) Foster realization 
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(b) Cauer realization 

Fig. 2.  Equivalent circuits 
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Fig. 3  Reactor 
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Recently, an exact and efficient modeling method for the eddy current field is found.
1)

 This method expands the eddy 

current field to an equivalent circuit called Cauer Ladder Network (CLN). The procedure for obtaining this network and 

the benefits of this method are introduced here. 

Consider a magnetic sheet shown in Fig. 1, where d denotes the width of the sheet, µ and σ denote the magnetic 

permeability and electric conductivity of the material respectively. It is supposed that exciting field 0H  is applied 

externally. The equation for the eddy current field is given by (1) as an one-dimensional problem. 
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Solving this equation under the boundary condition 0( / 2)H d H  gives the magnetic field (2) and the equivalent 

magnetic permeability as (3). 
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Here the complex variable k is defined by k j   and   denotes the total flux in the magnetic sheet. The 

trigonometric function divided by its argument can be expanded by the following two forms, a partial fraction 

expansion (4) and a continued fraction (5). 
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By setting 28 / ,c cR d L    and 2 22 / ( 1 2)cn cL L n   , the effective complex permeability can be respectively 

expanded as 
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The former corresponds to the Fourier I expansion and the latter corresponds to the Cauer I expansion. The equivalent 

circuits for these expansions can be realized by the equivalent circuits shown in Fig. 2, Foster realization and Cauer 

realization respectively. These equivalent circuits can be employed for modeling of actual electric machines such as a 

reactor as shown in Fig. 3. In fact, the reactance of this reactor is expressed by j j /L SN l  , where S, N and l 
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(a) Foster I and II                                        (b) Cauer I 

Fig. 4.  Bode plots of Foster and Cauer expansions. ( L  ) 

denote the cross section of the laminated core, the coil turns 

and the effective core length respectively. The examples of 

Bode plots with finite truncations of these networks are shown 

in Fig 4, where n denotes the number of the inductors. It is 

obvious that Cauer expansion is much effective than Foster 

expansion. 

Recently, it was found that this Cauer realization can be 

expanded to arbitrary three-dimensional eddy current field as 

illustrated in Fig. 5.
2)

 For preparation, define 
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Then the method is presented by the following steps. 

Step 0: Assume that the voltage v is applied externally. Solve 

0 0 E  under given voltage boundary condition. Set 

0 0 / vE E  and calculate R0 using (9). Set 1 0 H  and n = 1. 

Step 1: Solve 2 1 2 1 2 2n n nR    H Ε  under magnetic boundary conditions. Set 2 1 2 1 2 3n n n   H H H  and calculate 

L2n-1 by using (9). 

Step 2: Solve 2 2 1 2 1(1/ )n n nL    E Η . Set 2 2 2 2n n n E E E  and calculate R2n by using (9). 

Step 3: If the finite sum of (8) converge sufficiently, then stop the calculation. Otherwise set n = n+1 and go to Step 1. 

This method provides the network constants in Fig. 6, and simultaneously provides the spatial distribution functions 

2nE  and 2 1nH . The circuit variables e2n and h2n+1 can be obtained by real-time simulation of the ladder network. The 

magnetic field and the current distribution can be synthesized using (8). Furthermore, the total magnetic energy Wm and 

the power consumption WR in the entire domain Ω are presented in lumped forms as 
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In the actual electric machine designs, the nonlinearity and hysteresis property, as well as the anomaly eddy current loss, 

frequently become important issues.
 3)

 The authors hope that the proposed method can be applied to estimate the 

anomaly eddy current loss. However, it may not be so easy because of the moving of domain walls due to the 

fluctuation of the magnetic field. 
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Fig. 5.  Eddy current field 
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Fig. 6.  Ladder network 
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