Co/Pd 多層膜のスピン注入磁化反転臨界電流の層厚比依存性

趙望臻、木村匠、大島大輝、加藤剛志、園部義明*、川戸良昭*、岩田聡 (名大,*サムスン日本研究所)

Dependence of critical current of spin transfer torque magnetization switching on the layer thickness ratio of Co/Pd

multilayers

W. Zhao, T. Kimura, D. Oshima, T. Kato, Y. Sonobe*, Y. Kawato*, S. Iwata

(Nagoya Univ., *Samsung R&D Institute Japan)

1. はじめに

スピン注入磁化反転は、大容量 MRAM を実現する技術として開発が進められているが、10 Gbit を超える容量の実現には、高い熱安定性と低い臨界電流を両立させる高効率な磁化反転手法の開発が求められる。我々は高効率な磁化反転を実現するメモリ層として、低いキュリー温度(T_c)の低 T_c 層と高 T_c 層を交換結合させた積層型垂直磁化メモリ層に注目している[1]。低 T_c 層として CoPd / Pd 多層膜、高 T_c 層として Co / Pd 多層膜を用いた積層膜の磁化反転を検討し、低 T_c 層の磁化反転が、高 T_c 層の磁化方向との交換結合により制御できることを示してきた[2]。今回は高 T_c 層である Co / Pd 多層膜へのスピン注入磁化反転を検討し、その臨界反転電流密度の層厚比依存性を調べたので報告する。

2. 実験方法

熱酸化膜付 Si 基板上にマグネトロンスパッタ法により、Si sub. / Ta (10) / Cu₇₀Ta₃₀ (150) / Pt (5) / [Pt (1.0) / Co (0.6)]₆ / Cu (2.5) / [Co (*t_{Co}*) / Pd (*t_{Pd}*)]₃ / Cu (5) / Ta (2) (膜厚の単位は nm) を作製した。素子の微細加工には、フォトリソグラフィ、ECR プラズマ Ar イオンエッチング、および電子ビームリソグラフィを用い、直径 140 - 200 nmφの接合を有する CPP-GMR 素子を作製した。磁気抵抗特性は直流 4 端子法により評価し、スピン注入磁化反転はパルス幅 10 µsec~10 msec のパルス電流を印加後、100 µA の読み出し電流で接合抵抗を測定することで評価した。

3. 実験結果

Fig. 1 は Co (0.3 nm) / Pd (1.2 nm)層へのスピン注入磁化反転の臨界電流密度のパルス幅依存性である。素子直径は 140 nm ゆであり, Fig. 1 には反平行状態(AP)から平行状態(P)への電流密度(JAP-P), P から AP への電流密度 (JP-AP) 及び それらの平均電流密度 Jave を示している。臨界電流密度はパルス幅 tの増大により減少しているが, これから t= 1 nsec の電流密度 J_{c0}, 熱安定性指標 $\Delta = K_u V / k_B T$ を見積もった。Fig. 2 は様々な素子直径の Co / Pd の Jav のパルス幅依存性 より見積もった J_{c0} と Δ の層厚比 t_{Pd} / t_{Co} 依存性である。 $t_{Pd} / t_{Co} \leq 2$ では, J_{c0} は t_{Pd} / t_{Co} の増加とともに増加している。 Co / Pd 多層膜では t_{Pd} / t_{Co} の増大によりダンピング定数 α が増加することから[3], この領域での J_{c0}の増加は Co / Pd の Jav の増加 Co / Pd の Jav の 2 の の増加 Co / Pd の α の増加を反映している可能性がある。一方, t_{Pd} / t_{Co} がさらに増加すると J_{c0} が減少する傾向が見られ, Co / Pd の Jav の 2 の 変化のみでは説明できないと考えられる。一方, Fig. 2 から Δ の t_{Pd} / t_{Co} 依存性は小さいと考えられる。 4.参考文献

[1] Machida et al., IEEE Trans. Magn., 53, 2002205 (2017).

[2] W. Zhao et al., IEEE Trans. Magn., DOI: 10.1109/TMAG.2018.2828138 (2018).

[3] T. Kato et al., IEEE Trans. Magn., 48, 3288 (2012).

Fig. 1 Pulse width dependence of the STT switching current densities of the Co / Pd multilayer with a pillar diameter of $140 \text{ nm}\phi$.

Fig. 2 Dependence of $J_{c0(av)}$ and Δ on the thickness ratio t_{Pd} / t_{Co} of the [Co (t_{Co}) / Pd (t_{Pd})]₃ ML. The data taken from the CPP-GMR nano-pillars with various pillar diameters are plotted.