FeNiN 薄膜からの脱窒素による L10-FeNi 薄膜の形成

伊藤啓太 1、林田誠弘 1、水口将輝 1、末益崇 2、柳原英人 2、高梨弘毅 1 (1 東北大学 金属材料研究所, 2 筑波大学 物理工学域) Formation of L1₀-ordered FeNi films by nitrogen extraction from FeNiN films K. Ito¹, M. Hayashida¹, M. Mizuguchi¹, T. Suemasu², H. Yanagihara², K. Takanashi¹ (¹IMR, Tohoku Univ. ²Inst. of Appl. Phys., Univ. of Tsukuba)

背景

希土類や貴金属を含まない資源が豊富な元素で構成される、高い一軸磁気異方性エネルギー(Ku)を有する強 磁性体材料が求められている。我々は L10-FeNi 規則合金に注目して単結晶薄膜の作製と、規則度および Ku の向上に取り組んできた¹⁾。一方でごく最近、正方晶 FeNiN の多結晶粉末に対する、水素ガス雰囲気下熱処 理による脱窒素法により、比較的高い規則度(0.71)を持つ多結晶 L1₀-FeNi 粉末の合成が実現された²⁾。本研究 では、脱窒素法により高規則度単結晶 L10-FeNi 薄膜を作製し、より正確に Ku等の磁気物性値を評価するため に、分子線エピタキシー(MBE)法による単結晶 FeNiN 薄膜の作製と、それらに対する脱窒素処理を行った。 実験

Fe、Ni、高周波(RF)N2の同時供給による MBE 法により³⁾、SrTiO₃(STO)(001)、MgAl₂O₄(MAO)(001)、MgO(001) 基板上に FeNiN 薄膜(20 nm)のエピタキシャル成長を試みた。成膜温度を 300 °C、N₂流量を 1.0 sccm、RF 入 力を 240 W、Fe と Ni の蒸着レートはそれぞれ 0.040 Å/s および 0.038 Å/s で固定した。作製した試料に対し、 温度 300°C、時間 4 h、H₂流量 1 L/min での脱窒素熱処理を行った。試料の構造を Out-of-plane(ω-2θ)および In-plane(φ-2θχ)X線回折(XRD)で評価し、室温での磁化曲線を振動試料磁力計で測定した。

> (a) 1.0

> > STO(001) MAO(001)

MgO(001)

A1-FeNi

tion

izat 0.5

結果

XRD 測定の結果から、いずれの試料も a 軸配向 FeNiN 薄膜 のエピタキシャル成長に成功し、膜面内に倒れた c 軸の方向が 互いに 90°異なる、2 種類のバリアントが形成された {FeNiN[001](100) || 基板[100](001)および FeNiN[010](100) || 基 板[100](001)}。脱窒素後の XRD パターンは、上記のエピ関係を 保ったまま窒素が抜けて FeNi が形成された場合のパターンと 矛盾しなかった。Fig. 1(a)および 1(b)に、脱窒素後の試料の膜面 内および面外に外部磁場を印加した際の磁化曲線を示す。参照 として、単結晶 A1-FeNi 薄膜の磁化曲線も示した。Fig. 1(a)では 脱窒素法で作製した FeNi 薄膜の方が A1-FeNi 薄膜よりも保磁 力が大きく、残留磁化が小さい。Fig. 1(b)では、脱窒素法で作製 した FeNi 薄膜の方が飽和磁場が大きい。これらの結果から、-軸磁気異方性が膜面内の2つのc軸方向に付与されたa軸配向 L10-FeNi 薄膜の形成が示唆された。Fig. 1(b)の磁化曲線から脱窒 素後の試料の K_uは 9.9×10⁵ erg/cm³程度と見積もられ、規則度は 0.1 程度と推測される⁴⁾。今後は、FeNiN 薄膜の作製条件や脱窒 素処理条件を最適化し、規則度とKuの向上を目指す。

謝辞

本研究は JSPS 科研費(No. 17K14651)、文部科学省推進プロジ ェクト元素戦略磁性材料研究拠点(ESICMM)の支援を受けた。

magnet 0.0 malizec -0.5 H // substrate[100] T = RTPor -1.0 -3000 -2000 -1000 1000 2000 3000 0 External magnetic field [Oe] (b) 1.0 STO(001) magnetization MAO(001) 0.5 MgO(001) A1-FeNi 0.0 Vormalized -0.5 H // substrate[001] T = RT-1.0 10000 20000 30000 -30000 -20000 -10000 0 External magnetic field [Oe]

Fig. 1 Magnetization curves of FeNi films.

 $M_{\rm S} = 1100 \ {\rm emu/cm^3}.$

参考文献

1)K. Takanashi et al., J. Phys. D: Appl. Phys. 50, 483002 (2017). 2)S. Goto et al., Scientific Reports 7, 13216 (2017). 3)F. Takata et al., Jpn. J. Appl. Phys. 57, 058004 (2018). 4)T. Kojima et al., Jpn. J. Appl. Phys. 51, 010204 (2012).