## エピタキシャル bcc-Fe<sub>100-x</sub>Co<sub>x</sub>合金薄膜の回転磁界中における磁歪挙動

芹澤伽那<sup>1.2</sup>・川井哲郎<sup>1</sup>・大竹充<sup>1</sup>・二本正昭<sup>2</sup>・桐野文良<sup>3</sup>・稲葉信幸<sup>4</sup> (<sup>1</sup>横浜国大,<sup>2</sup>中央大,<sup>3</sup>東京藝大,<sup>4</sup>山形大)

## Magnetostriction Behaviors of Fe<sub>100-x</sub>Co<sub>x</sub> Alloy Epitaxial Thin Films under Rotating Magnetic Fields Kana Serizawa<sup>1,2</sup>, Tetsuroh Kawai<sup>1</sup>, Mitsuru Ohtake<sup>1</sup>, Masaaki Futamoto<sup>2</sup>, Fumiyoshi Kirino<sup>3</sup>, and Nobuyuki Inaba<sup>4</sup> (<sup>1</sup>Yokohama Nat. Univ., <sup>2</sup>Chuo Univ., <sup>3</sup>Tokyo Univ. Arts, <sup>4</sup>Yamagata Univ.)

はじめに Fe および Fe-Co 合金は代表的な軟磁性材料であり、トランスなどの電磁エネルギー変換機器からセン サーなどの磁気デバイスまで幅広く用いられている。これらの応用では、飽和磁化や保磁力などの基本磁気特性 に加え,磁歪特性の制御もしばしば要求される.我々は,これまで,結晶方位が異なる MgO 単結晶基板上に Fe70Co30 (at.%) 合金膜をエピタキシャル成長させ、その磁歪特性を回転磁界を用いて調べてきた<sup>1)</sup>.本研究では、Co/Fe 組成を変化させることにより Fe100-xCox 合金膜を形成し、組成が磁歪挙動に及ぼす影響について系統的に調べた. 実験結果 いずれの組成においても、Mg(001)、MgO(110)、MgO(111)/Al<sub>2</sub>O<sub>3</sub>(0001)基板上には、それぞれ、bcc(001) 単結晶, bcc(211)双結晶, bcc(110)複合エピタキシャル膜が形成された.また,磁化曲線を測定した結果, Fe, Fe<sub>70</sub>Co<sub>30</sub>, Fe50Co50 膜の順に磁気異方性が減少する傾向が認められた Fig. 1(a-1)および(a-2)にそれぞれ Fe(001)単結晶膜の bcc[100]および bcc[110]方向に対して観察を行った磁歪の出力波形を示す.いずれの観察方向においても、低磁界 強度では、磁気異方性により磁化と回転磁界方向が一致していないため<sup>2)</sup>, Fig. 1(a-1)ではバスタブ状, Fig. 1(a-2) では三角状の波形が現れている.磁界強度の増加に伴い、磁化と磁界方向が一致し、正弦波に近づく傾向が認め られる. Fig. 1(b)および(c)に Fe70Co30 および Fe50Co50 膜の磁歪波形をそれぞれ示す.磁気異方性の減少に伴い、よ り低磁界強度で正弦波となっていることが分かる.また,1.2 kOeの磁界印加時の出力波形から求めた Fe, Fe<sub>70</sub>Co<sub>30</sub>, Fe<sub>50</sub>Co<sub>50</sub>膜の磁歪定数( $\lambda_{100}, \lambda_{111}$ )は、それぞれ、(25×10<sup>-6</sup>, -24×10<sup>-6</sup>)、(170×10<sup>-6</sup>, 11×10<sup>-6</sup>)、(70×10<sup>-6</sup>, 62×10<sup>-6</sup>)となり、 バルク結晶<sup>3)</sup>と同様に x = 30の組成付近で大きな $\lambda_{100}$ が現れることが分かった.当日は、bcc(211)双結晶および bcc(110)複合膜の磁歪挙動についても報告する.



**Fig. 1** Output waveforms of magnetostriction for bcc(001) single-crystal (a) Fe, (b)  $Fe_{70}Co_{30}$ , and (c)  $Fe_{50}Co_{50}$  films measured parallel to (a-1)–(c-1) bcc[100] and (a-2)–(c-2) bcc[110] under different rotating magnetic fields.

## 参考文献

- 1) 芹澤伽那, 川井哲郎, 大竹充, 二本正昭, 桐野文良, 稲葉信幸: 第41回日本磁気学会学術講演会概要集, p.166 (2017).
- 2) T. Kawai, T. Aida, M. Ohtake, and M. Futamoto: J. Magn. Soc. Jpn., 39, 181 (2015).
- 3) 近角聡信: 強磁性体の物理, p.122 (1963).