カプセル型医療機器に内蔵可能な磁気駆動生検機構

松井利樹、本田崇
（九州大学）

Magnetically driven biopsy mechanisms incorporated into capsule-type medical device

T. Matsui, T. Honda
(Kyushu Inst. of Tech.)

はじめに
カプセル内視鏡は小腸検査に広く用いられるようになったが、その機能は現状では観察に限定される。本研究では、診断をできる次世代カプセル内視鏡への搭載を目指し、外部磁界でワイヤレス駆動可能な3種類（タイプA,B,C）の生検機構を考案した。本報ではそれらの試作と評価結果について報告する。

素子構成と動作原理
生検機構を組み込むカプセル筐体の寸法は、直径11mm、長さ31mmとした。生検機構はいずれも永久磁石を固定したボルトとナットを組み合わせた機構で構成し、回転磁界から受ける磁気トルクで動作する。以下にそれぞれの概要を示す。

タイプA
Fig.1にタイプAの基本構成と動作原理を示す。ボルト（M2）の一端に円筒刃（φ2mm）、他端にNdFeB磁石（φ4mm×2mm、径方向着磁）を取り付けたもので、カプセルの長軸方向に対して垂直に固定したナットに挿入し構成される。x-z平面に回転磁界を印加すると、磁石が磁気トルクを受ける、円筒刃が回転しながらカプセル侧面から突出する。円筒刃が生体組織を切り取った後、逆方向の回転磁界を印加することで、組織の回収を行う。

タイプB
タイプBは、2つの円筒刃（可動刃と固定刃、φ8mm）でカプセル側孔内に食い込んだ組織を挟み切る機構を採用した。Fig.2に基本構成と動作原理を示す。カプセル中心軸に配置したボルト（M2）にNdFeB磁石（φ8mm×2mm、径方向着磁）を固定し、スライダとして可動刃を取り付けたナット（M2）を挿入し構成する。y-z平面に回転磁界を印加すると、ボルトが回転しナットがカプセル長軸方向に直動することで2つの円筒刃間の組織を挟み切断する。

タイプC
Fig.3にタイプCの構造と動作原理を示す。2つの銃子カッパの開閉で組織を切り取る機構を採用した。構造は、タイプBのスライダに対し可動刃の代わりに市販の銃子の芯と圧縮パネを組み合わせた機構を取り付けている。動作は、4段階で行われる。まずy-z平面に回転磁界を印加することで、銃子を筐体内前方に突出させる。続いて、さらに磁界を印加することでパネを圧縮しながら芯を押し込み銃子が開く。ここでy-z平面に逆向きの回転磁界を印加すると、パネの弾性力で中心の芯が引き戻され銃子が閉じ組織を取り取る。その後、更に磁界を印加することで、銃子を閉じた状態を保持したまま銃子を筐体内に格納する。