高周波励磁のナノ結晶リアクトルコアの鉄損特性

塚田 航平* 藤崎 敬介* 進藤 裕司** 吉川 直樹** 吉竹 徹真** (*豊田工業大学、**川崎重工業株式会社)

Iron Loss Characteristics of Nanocrystal Reactor Core of Road High Frequency Excitation *Kohei Tsukada, *Keisuke Fujisaki, **Yuji Shindo, **Naoki Yoshikawa, **Tetsuma Yoshitake (*Toyota Technological Institute, **Kawasaki Heavy Industries, Ltd.)

<u>はじめに</u>

リアクトルはインバータの出力フィルタなどで使用されており、リアクトル設計等のために、周波数および材料の違いによる損失の特性解明が待たれている⁽¹⁾。そこで今回、正弦波励磁を用いて 6.5 %Si 材リアクトルとナノ結晶材リアクトルの磁気特性を比較したので、以下に述べる。

<u>評価・実験方法</u>

試験回路を Fig. 1.に示す。本試験では、正弦波を用いてリアクトルを励磁する。使用したリアクトル材料は、ナノ結晶材料および、6.5% Si 材料である。また、励磁条件は基本周波数 500 Hz、1k Hz とし、2 つの周波数条件で比較した。

本試験ではリアクトルコアの最大磁東密度 $B_{\rm m}$ を 1.0 T、リアクトル間の空隙幅を 2 mm とし、励磁条件を統一した。今回、最大磁東密度は 2 次側の励磁電圧 V_2 を測定し、次式で算出する。

$$B_m = \frac{1}{n_2 S} \oint V_2 dt$$

ここで、n₂は二次側の巻線数(=5 turns)、S はリアクトル断面積である。また、今回評価を行うリアクトルに 生じる損失(鉄損)W は次式で算出される。

$$W = P_{re} - I_{re}^2 R_{re}$$

ここで、P_{re}はリアクトル間に生じる電力、I_{re}はリアクトルに流れる電流、R_{re}はリアクトル巻線抵抗である。

測定結果と考察

Fig.2.に 6.5 %Si 材リアクトルとナノ結晶の鉄損を比較した 結果を示す。500 Hz において、ナノ結晶材と 6.5 %Si 材の鉄損 は 31~34 W 程と差がないが、1000 Hz に周波数を増加させたと き、ナノ結晶材のリアクトルの鉄損増加率は 14 %と小さいの に対して、6.5 %Si 材のリアクトルの鉄損増加率は 68 %と非常 に大きく増加することがわかる。

以上の結果より、ナノ結晶材料は高い周波数においてリアク トルに生じる鉄損が小さく、高周波における優れた材料と言え る。

参考文献

 S. Odawara, S. Yamamoto, K. Sawatari, K. Fujisaki, Y. Shindo, N. Yoshikawa, T. Konishi "Iron Loss Evaluation of Reactor Core With Air Gaps by Magnetic Field Analysis Under High-Frequency Excitation", IEEE Trans. magn., vol. 51, pp.1-4, no. 11, 2015.

Fig. 1. Reactor iron loss measurement.

Fig. 2. Reactor core loss at 500 Hz and 1 kHz.