Large perpendicular magnetic anisotropy in sputter-deposited Fe_{100-x}Al_x/MgAl₂O₄ heterostructures

T. Scheike, °H. Sukegawa, X.D. Xu, T. Ohkubo, K. Hono and S. Mitani (NIMS)

Large perpendicular magnetic anisotropy (PMA) at ferromagnet (FM)/oxide interfaces is of utmost importance for magnetic tunnel junctions (MTJ) based memory devices such as spin-transfer torque magnetoresistive random access memory (STT-MRAM) and magneto-electric RAM. In recent publications, Al diffusion from a Co₂FeAl FM layer into an MgAl₂O₄ layer was reported to induce large PMA energy $K_{eff} = 0.4$ MJ/m³ in lattice-matched Co₂FeAl/MgAl₂O₄(001) epitaxial heterostructures.^{1,2}) It was suggested that the element diffusion resulted in strong hybridization of Fe- with O-orbitals at their interface, assisting the PMA contribution.²) In order to improve K_{eff} further, we examined the bcc Fe-Al with Fe rich compositions as an FM layer. Here, we report larger PMA energy K_{eff} over 1 MJ/m³ using ultrathin Fe_{100-x}Al_x/MgAl₂O₄ heterostructures for various x.

The following stack structures were deposited on MgO(001) single crystal substrates using an ultrahigh vacuum magnetron sputtering system: MgO substrate/Cr (40)/Fe_{100-x}Al_x (t_{FeAI})/Mg (0.2)/Mg₄₀Al₆₀ (0.7)/plasma oxidation/Ru (2) (thickness in nm). The MgO substrate/Cr layer was annealed at 750°C for 1 h. Fe_{100-x}Al_x was deposited by co-sputtering of Fe and Al. An MgAl₂O₄ layer was formed by the plasma oxidation of the Mg/Mg₄₀Al₆₀ bilayer. The stacks were post-annealed *ex-situ* at temperatures of T_{ann} . Magnetic properties including K_{eff} were evaluated using a vibrating sample magnetometer at room temperature.

As shown in Fig. 1, large $K_{\rm eff}$ above 1 MJ/m³ was obtained for x = 11, 20, and 28, which was nearly the same value observed in Fe/MgAl₂O₄ fabricated by electron-beam deposition.³⁾ For $T_{ann} < 300^{\circ}$ C, K_{eff} increases with x. K_{eff} values show a strong T_{ann} dependence above 300°C ($x \le 20$), showing possible tunability of PMA properties with Al concentration and $T_{\rm ann}$. Scanning transmission electron microscope analysis showed a lattice-matched interface with Al diffusion from the Fe-Al layer into the barrier. Above 300°C, diffusion of Cr was also confirmed; however, we observed no significant change in the saturation magnetization and negligible magnetic dead-layer. The results show very large interfacial PMA can be achieved by atomically-controlling element diffusion in sputter-deposited heterostructures. Therefore, the Fe_{100-x}Al_x/MgAl₂O₄ is a good candidate for future spintronic applications. This study was supported by the ImPACT Program, and JSPS KAKENHI Grant Nos. 16H06332 and 16H03852.

Reference

- 1) H. Sukegawa et al., Appl. Phys. Lett. 110, 112403 (2017).
- 2) J.P. Hadorn et al., Acta Mater. 145, 306 (2018).
- 3) Q. Xiang et al., Appl. Phys. Express 11, 063008 (2018).

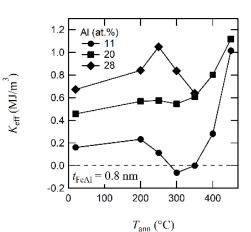


Fig. 1. T_{ann} dependence of K_{eff} of various Al concentration (x) in Fe_{100-x}Al_x ($t_{FeAl} = 0.8 \text{ nm}$)/MgAl₂O₄ heterostructures.