鉄系 21113 化合物 Sr₂T_MFeAsO_{3-δ}の合成および輸送特性

山口道太郎,藤岡弘孝,大塚貴史,瀬戸誠*,北尾真司*,的場正憲,神原陽一

(慶應大,*京都大)

Synthesis and transport properties of Iron-based 21113 compounds $Sr_2T_MFeAsO_{3-\delta}$ M. Yamaguchi, H. Fujioka, T. Otsuka, M. Seto^{*}, S. Kitao^{*}, M. Matoba, and Y. Kamihara (Keio Univ., *Kyoto Univ.)

1 はじめに

鉄系超伝導体は FePn 面 (Pn = P, As) のキャリア伝導層とキャリアブロック層から構成される.中でも,化学組成比より 21113 系と呼ばれる結晶系に分類される物質は,ペロブスカイト類似のキャリアブロック層に由来する長い c 軸長 (~1.57 nm) を持ち,空 間群 P4/nmm の正方格子をとる.この結晶系に分類される Sr₂VFeAsO_{3- δ} は 37.2 K の超伝導転移温度を示す¹⁾. 一方, V を Cr に 置換した Sr₂CrFeAsO_{3- δ} は母相では超伝導を示さず²⁾, Cr サイトへの Ti ドーピングにより超伝導を示す³⁾.この系の超伝導発現 機構について議論になっている.また,1111 系,122 系において,磁気秩序相と超伝導相は非共存という報告がある⁴⁾.本研究では, Sr₂CrFeAsO_{3- δ} の合成および結晶相, 輸送特性の評価を報告する.

2 実験方法

石英管を用いた固相反応により, 仕込み酸素欠損量 d = -0.10-0.40 の Sr₂CrFeAsO_{3-d} の多結晶試料を合成した. X 線回折 (XRD) 装置 (Rigaku Co., Ltd., RINT2500Ultra18, Cu K α radiation) により, 結晶相同定を行った. さらに, 最小二乗法を利用して格子定数 (a,c) と格子体積 (V) を求めた.

ヘリウム循環式 GM 冷凍機 (Sumitomo Heavy Industries Ltd., SRDK-101D) を用いた電気抵抗率測定装置により, 四端子法で電気抵抗率の温度依存性を測定した. また, ⁵⁷Fe メスバウア分光測定 (⁵⁷Co 線源) を行い, Fe 副格子の磁気秩序を調べた. スペクトルの解析には, "Moss Winn"を用いた.

結果および考察

XRD パターンの測定結果より, Sr₂CrFeAsO₃ が主相であり, 異相として FeAs, FeAs₂, Fe₂As, Sr₄Cr₃O₉, SrO が確認された. 比較 的異相の少ない d = 0.15, 0.20, 0.40の試料より, $\delta \geq V$ の線形関係を仮定して $\delta - V$ 較正直線を定め, 各試料の δ を半定量的に決定 した. 得られた $\delta \geq a, c, V$ の関係を Fig. 1 に示す.

電気抵抗率の測定結果より、30-50 K にキンクが存在した. 0.12 < δ < 0.21 の試料ではキンク温度 (T_{anom}) 以下で電気抵抗率は 減少し、0.25 < δ < 0.26 の試料ではキンク温度 (T_{min}) 以下で電気抵抗率は増加した. ⁵⁷Fe メスバウアスペクトルの測定結果より、 δ = 0.16 の試料では、60-77 K で線幅が増大し、40 K 以下で磁気分裂による sextet を示した. δ = 0.25 の試料では、30 K 以下で線幅 が増大し、sextet を示さなかった. このことから、 δ = 0.16 の試料の Fe 副格子は反強磁性 (AF) であり、 δ = 0.25 の試料の Fe 副格子 はスピン(空産させ (SDW) でキュートレーの性用とい想とかせ Sr₂CrFeAsO₃. の意志では気がなせいなく Find a constant

Fig. 1 Calibrated oxygen deficiency (δ) dependence of lattice constants (a, c) and lattice volumes (V) of Sr₂CrFeAsO_{3- δ}. Black lines in red plots show standard deviation of the values.

参考文献

- 1) X. Zhu, et al., Phys. Rev. B 79, 220512 (2009).
- 2) H. Ogino et al., Supercond. Sci. Technol. 22, 075008 (2009).
- 3) X. Zhu et al., Sci. China Ser. G 52, 1876 (2009).
- 4) S. Kitao et al., J. Phys. Soc. Jpn. 77, 103706 (2008).

Fig. 2 Phase diagram of Sr₂CrFeAsO_{3- δ} in terms of δ and temperature. T_{AF} (Fe) (red square), T_{SDW} (Fe) (blue square), T_{anom} (upward orange triangles), T_{min} (downward green triangles) are plotted against δ .