積層反強磁性体におけるレーザー誘起スピン波伝播

上牧 瑛^{1,2}, 飯浜 賢志¹, 鈴木 和也^{1,3}, 水上 成美^{1,3} (¹東北大学 WPI-AIMR, ²東北大学院工, ³東北大学 CSRN)

Laser-induced propagating spin wave in synthetic antiferromagnets A. Kamimaki^{1,2}, S. Iihama¹, K. Z. Suzuki^{1,3}, S. Mizukami^{1,3} (¹WPI-AIMR, Tohoku Univ, ²Dept. of Appl. Phys., Tohoku Univ, ³CSRN, Tohoku Univ.)

背景

反強磁性体は隣接する磁気モーメントが互いに反平行に結合しており,強磁性体とは異なる磁化ダイナミ クスを示すことから,新規デバイス応用が期待されている¹⁾.一方,反強磁性体のダイナミクスはその高い 共鳴周波数から測定が容易でなく,特に反強磁性金属薄膜におけるスピン波伝播の報告はない.そこで本研 究では,パルスレーザーを用いた反強磁性積層膜(SAF構造)におけるスピン波の観測を試みた.

実験方法

SAF 構造として, Si/SiO₂(sub.)/Ta(3)/CoFeB(3)/Ru(0.4)/CoFeB(3)/Ta(3)薄膜(膜厚:nm 単位)をスパッタ法により製膜した.磁気特性の評価には、極カー効果ならびに振動試料型磁力計を用いた.磁化ダイナミクス・スピン波伝播の評価には、光ポンプ・プローブ時間分解磁気光学カー効果,及び顕微光ポンプ・プローブ時 空間分解磁気光学カー効果(STR-MOKE)をそれぞれ用いた²⁾.

実験結果

磁化測定の結果, 試料は約 1.2 T の交換結合磁場を有することが分かった.図1(a)に一斉歳差モードから評価した有効ダンピング定数 α_{eff} の外部磁場角度 θ_{H} 依存性を示す.印加磁場の強さは 1.3 T とした. $\theta_{H} \ge 40^{\circ}$ (ただし θ_{H} は膜面直からの角度)において $\alpha_{eff} \simeq 0.012$ と比較的小さい値を示した.図1(b)に STR-MOKE の測定結果を示す. $\Delta t, x, \Delta \theta_{k}$ ^{SW} はそれぞれ,ポンプ・プローブ遅延時間,スポット中心間距離,及び極カー回転角の変化である²⁾. ±5 µm 程度の領域で明瞭なスピン波の伝播が観測された.測定の結果は強磁性薄膜におけるスピン波²⁾の波形とは大きく異なっており,SAF 構造における反強磁性磁化配列を反映しているものと考えられる.

謝辞 本研究は科研費(26103004), Core-to-Core プログラム, 東北大学 GP-Spin の支援を受けた.

参考文献

1) J. Lan et al., Nat. Commun. 8, 178 (2018).

2) A. Kamimaki et al., Phys. Rev. B. 96, 014438 (2017).

図 1 (a) SAF 構造における有効ダンピング定数 α_{eff} の磁場角度 θ_{H} 依存性. (b) SAF 構造におけるレーザー 励起スピン波伝播の時空間マップ. Δt , x, $\Delta \theta_{K}^{sw}$ はそれぞれ, ポンプ・プローブ遅延時間, スポット中心 間距離, 及び極カー回転角の変化である. ただし, バックグラウンドは取り除いている²⁾.