長方配列 Au 粒子/Bi:YIG 構造体の光学および磁気光学応答の FDTD シミュレーション

板橋悠人¹, J. Schlipf^{1,2}, 大木敬介³, 斉藤伸³, 後藤太一^{1,4}, 中村雄一¹, P. B. Lim¹, I. Fischer², J. Schulze², 内田裕久¹, 井上光輝¹

(¹豊橋技科大,²University of Stuttgart,³東北大,⁴JST さきがけ)

FDTD simulation of optical and magnetooptical response for composite structure with rectangularly arranged Au particles/Bi:YIG

Y. Itabashi¹, J. Schlipf^{1,2}, K. Ooki³, S. Saito³, T. Goto^{1,4}, Y. Nakamura¹, P. B. Lim¹, I. Fischer²,

J. Schulze², H. Uchida¹, M. Inoue¹

(¹Toyohashi Univ. of Tech., ²University of Stuttgart, ³Tohoku Univ., ⁴JST PRESTO)

はじめに

透明な磁性体である磁性ガーネットはファラデー効果を利用し た光アイソレータなどに用いられており、デバイスの高度化や応 用のために、より大きな回転角を持つ材料の開発が望まれてい る. 周期配列 Au 粒子を磁性ガーネット(Bi:YIG)薄膜内に作製し、 局在型表面プラズモン共鳴を利用することでファラデー効果が増 大できる¹⁾. また長方配列した Au 粒子と Bi:YIG との複合膜で は、プラズモン共鳴が起こっている波長以外で大きなファラデー 回転角が得られている²⁾. 本研究では、この長方配列構造の光学 および磁気光学応答について、FDTD シミュレーションを用いて 考察をする.

光学および磁気光学応答

Fig. 1(a)に,電子線描画装置を用いて作製した x 方向 200 nm, y 方向 250 nm 周期の長方配列 Au 粒子を示す. この上に Bi:YIG を 成膜した複合構造体を解析に用いた.入射した光の偏光面の角度 を周期構造に対して 0, 30, 45, 60, 90 deg.と変化させて測定し た透過率とファラデー回転スペクトルを Fig. 1b と 1c に示す。 透過率ではプラズモン共鳴による光吸収の波長が変化し,入射光 の偏光面の角度が 45 度のときに透過率は増加し,さらにファラデ ー回転角が最も大きくなった.

FDTD 法を用いた計算結果を Fig. 2 に示す. ここで用いたモデ ルでは, Au 粒子の直径が 120 nm, Bi:YIG の厚さが 91 nm, 境界 条件を x 方向と y 方向で周期的境界, 膜厚方向を完全吸収境界と した. 偏光面の周期構造に対する角度が 45 deg.の時に最もファラ デー回転角が大きくなった. これは実験結果と一致する. また実 験と計算どちらも角度を 0 から 45 deg. に変えると, 直線偏光か ら円偏光に近づくことが分かった. これは Au 粒子が長方配列を していることによる形状の効果である. この試料の磁気光学効果 の増大は, 形状効果により結果として生じたものであると考えら れる.

参考文献

- 1) H. Uchida et al., J. Phys. D: Appl. Phys., **44**, 064014 (2011).
- 川口佑磨他,第41回日本磁気学会学術講演会概要集 19pA-4 (2017).

Fig.1 (a) A top view of fabricated Au particles, (b) transmissivity and (c) Faraday rotation spectra of composite structure.

Fig.2 Calculated (a) transmissivity and (b) Faraday rotation spectra using FDTD.