Ga 添加焼結 Nd-Fe-B 磁石の FORC 解析

宮澤和則¹,蓬田貴裕¹,岡本聡^{1,2},菊池伸明¹,北上修¹,佐々木泰祐²,大久保忠勝²,宝野和博², 高田幸生³,佐藤岳³,金子裕治³,加藤晃⁴

(1東北大学,2ESICMM,物材機構,3豊田中研,4トヨタ自動車)

FORC analysis on Ga added Nd-Fe-B sintered magnets

K. Miyazawa¹, T. Yomogita¹, S. Okamoto^{1,2}, N. Kikuchi¹, O. Kitakami¹, T.T. Sasaki², T. Ohukubo², K. Hono²,

Y. Takada³, T. Sato³, Y. Kaneko³, A. Kato⁴

(¹Tohoku Univ., ²ESICMM, NIMS, ³Toyota Central R&D Labs., Inc. ⁴Toyota Motor Corp)

1. <u>はじめに</u>

焼結 Nd-Fe-B 磁石はハイブリッド/電気自動車の駆動用モータへの適用など、環境・省エネルギー技術に おけるキーマテリアルの一つである. さらなる高性能化のために保磁力 H_cの増大が強く求められており、 高 H_c磁石として近年注目を集めているのが Ga 添加焼結 Nd-Fe-B 磁石である¹⁾. First-order reversal curve (FORC)解析は磁化反転に関する詳細な情報を考察するうえで非常に有効な手法であり²⁾, これまでに我々は 熱間加工 Nd-Fe-B 磁石に対して詳細な検討を進めてきた³⁾. 今回, Ga 添加焼結 Nd-Fe-B 磁石に対して FORC 解析を実施した結果を報告する.

2. 実験方法

試料はマクロな反磁界係数を小さくするため 0.5×0.5×3mm³のピラー形状に加工して測定を行った. *c*-軸は 長軸に平行である。測定は VSM を用いた.比較のために商用焼結 Nd-Fe-B 磁石も併せて測定しており,測 定温度は室温から 200 ℃ の範囲で行った.

3. 結果と考察

Fig. 1 に商用磁石, Fig. 2 に Ga 添加磁石の FORC 解析結果を示す. 商用磁石では, $\mu_0 H_c = 1.07$ Tであり, その FORC diagram には $H = H_c$ に対応する強いスポットに加えてゼロ磁場付近にも弱いスポットが確認される。このような低磁場スポットの存在は, 焼結 Nd-Fe-B 磁石における特徴の一つである⁴⁾. 一方, Ga 添加磁石では $\mu_0 H_c = 1.56$ Tであり, その FORC diagram においては, 低磁場スポットが非常に弱くなっていることが分かり, 高 H_c 発現との相関が示唆される. 現在, これらの温度依存性を測定し, 高磁場/低磁場スポット と H_c 挙動の相関について調査している.

Fig. 1 FORCs and FORC diagram of commercially available sintered magnet at rt

4. 参考文献

- 1) T.T. Sasaki et al. Scr. Mater., 113, 218 (2016)
- 2) C. Pike et al., J. Appl. Phys. 85, 6660 (1999)
- 3) T. Yomogita et al., under review
- 4) T. Schrefl et al., J. Appl. Phys. 111, 07A728 (2012)

Fig. 2 FORCs and FORC diagram of Ga-added sintered Nd-Fe-B magnet at 50°C

大規模シミュレーションによる粒界相のピンニング効果の研究

塚原宙、岩野薫、三俣千春¹、石川正、小野寛太 (高エネ研,¹物材機構)

Investigation for directional dependency of pinning effect of grain boundary phase using large-scale micromagentic simulation

H. Tsukahara, K. Iwano, C. Mitsumata¹, T. Ishikawa, and K. Ono $({\rm KEK},\,{}^1{\rm NIMS})$

はじめに

近年温室効果ガスによる温暖化が深刻し電気自動車などの低炭素社会に向けた技術が重要になっている.永 久磁石はその技術の中核を担う材料であり、さらなる高性能化に向けた研究が精力的になされている.永久 磁石は多数の粒子から構成され、磁気特性向上のためには粒子間の磁気的分断による磁化反転の阻止が重要 になる.永久磁石では浸透処理による粒界相の改質などの手法で磁化反転の伝搬を阻害する。しかしながら 磁化反転伝搬における粒界相の役割は完全には理解されていない.我々は反磁場の効果も含め粒界相の役割 について大規模シミュレーションを用いて研究した.その結果、外部磁場平行方向と比べて垂直方向に対し て粒界相による磁気分断を行うことで磁化反転の伝搬が阻害される事を明らかにした. 計算手法

図1 (a) に示される様に立方体の粒子を格子状に並べた異方性磁石モデルを用いてシミュレーションを行った。粒径は 64nm であり異方性磁石モデル 1 辺の長さは 1024nm である。磁化ダイナミクスは異方性磁石 モデルを 1 辺 2nm の立方体セルで分割し、 Landau-Lifshitz-Gilbert 方程式を周期境界条件下で解き計算した.よってこの異方性磁石モデルは 4,096 個の粒子から構成されており、シミュレーションでは約 1 億セルを用いている。今回のシミュレーションでは図 1(b), (c) に示される様に xy 平面および z 軸方向のみ粒界相がある場合を考え、それぞれ type A および B とした。外部磁場は z 軸方向に印加される。粒子を構成する物質は Nd₂Fe₁₄B を想定し、 飽和磁化 1281.2 emu/cm³、磁気異方性定数 4.5 × 10⁷ erg/cm³、交換スティフネス定数 12.5 × 10⁻⁷ erg/cm およびギルバートダンピング定数 1.0 を用いた.また粒界相は強磁性体を仮定し、主相粒子に比べ飽和磁化は 10%、交換スティフネス定数は 1%とし、磁気異方性は無いとした。

シミュレーションは独自に開発したシミュレーター を使用し KEK のスーパーコンピューティングシ ステム Blue Gene/Q で実行した [1]. 容易軸は平 均で z 軸から 11.6°傾たモデルを作成した. 結果

シミュレーションから計算された磁化曲線を図1(d) に示す.磁化曲線は粒界相が存在する方向に大きく 依存し、保磁力は type A で約 36kOe であり type B に比べ 1.28 倍大きな値となった. Type A では 磁化は徐々に減少しているのに対し、type B では 急激に磁化が減少する.図1(e) および (f) に type A および B の外部磁場が -36kOe での磁化状態を 示す. Type A では粒界相でのピンニング効果によ り磁化反転領域は z 軸方向のみに伝搬している事 が分かる.これに対し Type B では、反磁場の影響 により、z 方向に粒界相があるにも関わらず磁化反 転が磁石全体に広がる.

謝辞

本研究のシミュレーションは、高エネルギー加速器 研究機構 (KEK) の大型シミュレーション研究(課 題番号 16/17-25)により行われた.

H. Tsukahara, K. Iwano, C. Mitsumata, T. Ishikawa, K. Ono, Comput. Phys. Commun, 207, 217 (2016).

Fig 1: The simulation model (a), the grain boundary phase of type A (b) and B (c). The black lines represent the grain boundary phase. The calculated hysteresis curve (d), and the magnetization of type A (e) and B (f), when external field is -36kOe.

-147-

UHM 着磁に適した Nd-Ce-Fe-B 系急冷薄帯の開発

村上勘太、戸高孝、花島健太郎*、幸村治洋* (大分大、*ミネベアミツミ)

Development of Ne-Ce-Fe-B based melt-spun ribbons for UHM magnetization Kanta Murakami, Takashi Todaka, Kentaro Hanashima and Haruhiro Komura (Oita Univ., MinebeaMitumi Co. Ltd.)

<u>はじめに</u>

近年、車載用途のモータ開発が盛んに行われており、磁石にも耐熱性が要求されている。耐熱磁石として は、高保磁力の焼結磁石を利用することが多いが、使用環境によっては耐熱ボンド磁石が使用される場合が ある。耐熱ボンド磁石には耐熱磁粉が使用されているが、ボンド磁石としては高コストになること、高保磁 力による着磁率の低下が課題となっている。そこで、本研究では着磁率の高い着磁方法である UHM (Ultra High Magnetizing)着磁¹⁾に適した低コストかつ高保磁力な耐熱ボンド磁石用の磁粉開発を目的とした。また、 UHM 着磁を行う場合、ボンド磁石の Curie 温度が低くなることによるメリットがある。そこで、Nd をより 安価な Ce に一部置換することで、磁粉の低コスト化と Curie 温度の制御を試みた。また Zr 添加による保磁 力と Curie 温度へ与える影響についても同時に検討した。

<u>作製試料および熱処理条件</u>

組成は Nd-Fe-B 系を基準とし、希土類量 は 11 及び 13 at% で、Nd のみの試料と Nd の 30% を Ce で置換した試料を作製し、Ce 置換の効果を調べた。また、B は 6、8 そして 10 at% と変化させ、磁気特性に与える影響を調べた。さらに、Zr を 2 及び 5 at% 添加し、保磁力と Curie 温度への影響を調べた。磁粉は、母合金作製後にメルトスピニング法による急冷を行って作製した。作製した試料は 600 °C、650 °C 及び 700 °C で熱処理し(保持時間なし)、保磁力 H_{cl} 、飽和磁化 J_s (最大磁化 at 15 kOe) ならびに保磁力が最も大きい試料の Curie 温度 T_c の測定を行った。母合金は超小型真空アーク溶解装置(日新技研製, NEV ADO 3 型)を用いて作製し、急冷薄帯は液体急冷凝固装置(日新技研製、NEV-A05)を用いて作製した。磁気特性は振動試料型磁力計(VSM:理研電子, BHV-35H)で評価した。

<u>測定結果</u>

Fig. 1 に Zr の添加量に対する保磁力と Curie 温度の関係を示す。Fig. 1(a), は希土類が Nd のみであり、Fig. 1 (b)は Nd の 30% を Ce で置換した試料である。Fig. 1 から、Ce 置換によって Curie 温度が低下している ことがわかる。Ce の置換量によって Curie 温度の制御が可能なことが示唆される。一方、Zr の添加により 保磁力の増加と Curie 温度の低下傾向が得られた。当日は、測定結果の詳細及び Zr 添加の希土類量依存性に ついて報告する。

Fig.1 Relationship between coercivity and Curie temperature with respect to the amount of Zr added.

参考文献

1) 幸村、Nd-Fe-B 系ボンド磁石の紛体圧縮成形と高効率着磁技術、SOKEIZAI, Vol. 52, No. 8, pp. 1-5, 2011.

粒界改質した Nd-Fe-B 系焼結磁石の重希土類成分と磁気特性

町田憲一、難波雅弘、兪 小紅、西尾博明、遠藤政治 (大阪大学)

Heavy Rare Earth Elements and Magnetic Properties of Grainboundary Modified Nd-Fe-B Sintered Masgnets

Ken-ichi Machida, Masahiro Namba, Xiaohong Yu, Hiroaki Nishio, Masaji Endo

(Osaka Univ.)

1. 緒言

Nd-Fe-B 系焼結磁石では、Nd₂Fe₁₄B 主相粒子を取り囲む Nd リッチ粒界相に選択的に高保磁力成分である 重希土類元素 (Dy や Tb) を導入すること(粒界改質法)で、高い磁化と保磁力とを兼ね備えた磁石とする ことが可能となる[1]。この場合、Dy や Tb をいかに粒界部に均一に導入するかが重要であり、この良否によ り磁気特性、特に減磁曲線において磁化が急激に低下する部位の曲率(角型性)に顕著な違いが生じる。特 に、導入した Dy や Tb の拡散深さ方向に対する濃度の均一性が保磁力の増加割合の大小と密接に関連すると 考えられる。そこで、本研究では DyAl 系または Tb-Al 系合金を用いて Nd-Fe-B 系焼結磁石に対して粒界改 質処理を施し、磁化、保磁力、角型性などの研磨深さに対する数値の揺らぎについて検討したので報告する。

2. 実験

改質に用いた磁石は信越化学工業㈱製の N52 で、角柱状 (3×3×2.8 mm) または円柱状 (10 mmφ×3.5 mmL) の磁石片に切断し有機溶媒で脱脂後、既報[1]に従い改質処理を施した。改質材である Dy-Al 系または Tb-Al 系と Nd を含む Dy-Nd-Al 系または Tb-Nd-Al 系合金は、所定量のそれぞれの単体金属(純度:99~99.99%) をアーク溶解することで作製し、精製 Ar 雰囲気中、950℃で4時間加熱後、引き続き 550℃から 600℃で2時間アニール処理した。得られた角柱状磁石ではそれぞれの辺に沿って等方的に、また円柱状磁石では高さ方向L に沿って垂直に各底面を研磨し,これらの磁気特性は超電導式 VSM 装置を用いて室温で測定した。

3. 結果と考察

Nd-Fe-B系焼結磁石に対して、Tb₃Al₂合金粉末を改質材とし て処理した試料(この場合はL=7 mmの円柱状磁石で、単独の 1個で測定)磁気ループ曲線と同微分曲線を、未処理磁石のそ れらと併せて図1に示す。図から、Tb-Al系合金の改質により 保磁力が効果的に増大する反面、未処理磁石に比べて角形性が 幾分低下していることがわかる。これは改質処理により内部に 導入されたTb元素の分布に偏りが起こり、深さ方向に対して 保磁力のバラツキが生じたものと推察される。

次に、L=3.5 mmの円柱状磁石 2 個に対して同様に改質処理 を行い、上下のそれぞれの底面を同程度研磨した試料の磁気特 性を表1に示す。ここで、Lの大きさは研磨した円柱状磁石 2 個のL値の合計であり、未研磨のL=7 mmからの高さの差が 研磨した深さに対応する。表より、研磨することで磁化と最大 エネルギー積は幾分上昇したが、保磁力はほぼ同程度であった。 また角形性も研磨深さと共に幾分低下した。同様の結果は Dy-Al系合金等を改質材として使用した場合でも見られた。

<u>参考文献</u>

1) 町田、李、金属、78 (2008) 760 など

 町田、脇、難波、兪、西尾、遠藤、日本金属学会 2017 春期大会、 講演番号 S1.16

表1. **Tb-Al** 系合金で改質した円柱磁石の 長さ方向 L(研磨深

Sample	Br (T)	H _{cJ} (MA/m)	BHmax	H_k/H_{cJ}
As-is	1.46	0.969	410	95
Tb3Al2_L7.0	1.32	1.900	339	89
Tb3Al2_L6.6	1.32	1.890	341	88
Tb3Al2_L6.2	1.34	1.890	347	87
Tb3Al2_L5.8	1.35	1.896	347	85

Nd-Fe-B 磁石の微細構造が高温時の保磁力に及ぼす影響

原田俊貴*、柳井武志、中野正基、福永博俊(長崎大学) Influence of microstructure of Nd-Fe-B magnet on coercivity at high temperatures T. Harada, T. Yanai, M. Nakano and H. Fukunaga (Nagasaki University)

はじめに

Nd-Fe-B 磁石は、最高の最大エネルギー積をもつ 永久磁石であるが、高温での保磁力劣化が激しく、 温度上昇が見込まれる用途での使用が困難である。 この磁石の保磁力は、磁石の微細構造に依存するこ とが知られており、高温時の微細構造の影響を解明 することが高温での保磁力改善の手がかりとなる。 Sepehri-Amin らは、結晶粒径が及ぼす影響について、 反磁界の大きさに注目して計算機シミュレーション を行っているが¹⁾、本研究では、粒界三重点の大き さに加えて、交換スティフネス定数、結晶表面の磁 気異方性定数が高温時の保磁力に及ぼす影響を、計 算機を用いて解析を行った。

解析方法

Nd₂Fe₁₄B を母相とし、その外側に非磁性粒界相を 配置したモデル磁石を仮定した(Fig.1)。また、結 晶表面の異方性定数の影響を検討する際には母相と 比べて磁気異方性定数のみ低下した磁気劣化層(厚 さ 1.5 nm)を母相表面に配置した。モデルの一辺*L* (48 or 96 nm)をそれぞれ 32~64 等分し、32³~64³ 個の立方体要素に分割することで結晶内部の非一様 な反転を模擬した²⁾。境界条件として周期境界条件 を用いて無限に大きな磁石を仮定した。使用したパ ラメータを Table1 に示す。

Table1 Simulation parameters.						
	Nd ₂ Fe ₁₄ B phase			nonmagnetic		
	300 K	400 K	473 K	phase		
$K_{\rm u} [{\rm MJ/m^3}]$	4.50	3.01	1.62	0		
$J_{\rm s}$ [T]	1.61	1.41	1.22	0		
<i>A</i> _c [pJ/m]	8.70	6.66	4.97	0		
$K_{\rm d} [{\rm MJ/m^3}]$		$0 \sim K_{\rm u}$				

Fig.1 Simulation model.

解析結果

Fig.2 に保磁力 H_c の温度依存性を示す。図には粒 界三重点の大きさ $T \ge 60$ nm, 交換スティフネス定 数 $A \ge Table1$ に示す値 (A_c), 磁気劣化層の異方性 定数 $K_d \ge table1$ に示す値 (A_c), 磁気劣化層の異方性 定数 $K_d \ge table1$ に示す値 (A_c), 磁気劣化層の異方性 定数 $K_d \ge table1$ に示す値 (A_c), 磁気劣化層の し とした計算結果に加えて, それらのパラメータのう ちの T, A, K_d のみ変化させた場合の H_c を示してい る。また, 図中には $300 \sim 473$ K での H_c の温度係数 β も示している。図に示されるように, Tの増加, Aの減少, K_d の減少によってそれぞれ保磁力は減少す る。Tの影響は反磁界によるもの ²), K_d の影響は異 方性磁界によるもの ³ということは既に報告されて いるが, 交換結合の強度も保磁力に影響を及ぼす。 これは, 交換長の減少によるものと考えられる ²)。

K_dが減少するとβが改善される。このとき、磁壁 が結晶表面でピン止めされることが確認された。こ の結果は保磁力の発現機構をピンニング型にするこ とで保磁力の温度依存性を改善できる可能性を示唆 している。

Fig.2 Temperature dependence of coercivity H_c . β is the temperature coefficient of H_c between 300 to 473 K.

参考文献

- H. Sepehri-Amin *et al.*, Scripta Materialia, **89** (2014) pp.29-32.
- H. Fukunaga *et al.*, J. Appl. Phys., **117** (2015) #17A729.
- H. Fukunaga *et al.*, Jpn. J. Appl. Phys., **29** (1990) pp.1711-1716.

ナノコンポジット Nd₂Fe₁₄B/Mo/Fe-B 積層膜の磁気特性

大橋一輝,神尾知志,小池邦博,稲葉信幸,加藤宏朗 小川大介*,近藤政孝**,板倉 賢**,大兼幹彦***,安藤康夫*** (山形大,*NIMS,**九州大,***東北大)

Magnetic properties of nanocomposite Nd₂Fe₁₄B/Mo/Fe-B multilayer films

Kazuki Ohashi, Tomoshi Kamio, Kunihiro Koike, Nobuyuki Inaba, Hiroaki Kato,

Daisuke Ogawa*, Masataka Kondo**, Masaru Itakura**, Mikihiko Oogane***, Yasuo Ando***

(Yamagata Univ., *NIMS, **Kyushu Univ., ***Tohoku Univ.)

1. はじめに

永久磁石の最大エネルギー積(BH)_{max}の増大方法であるハード/ソフト相交換結合型のナノコン ポジット化は、均質なナノ結晶粒子の形成が困難なため、期待される性能が得られていない.他 の要因として Toga 等は第一原理計算により Nd₂Fe₁₄B/α-Fe 接合界面における負の交換結合状態 の存在が磁化低下の要因である事を指摘した[1]. 我々は実験的にこの交換結合状態の接合界面 異方性を確認し [2],[3], Nd-Fe-B がアモルファスの状態からポストアニールした Nd₂Fe₁₄B/Mo/Fe 積層膜における垂直磁気異方性の発現を報告している[4].本研究では Fe-B 合金を軟磁性相とし た Nd-Fe-B/Mo/Fe-B 積層膜の磁気特性に与える Mo 中間層効果を検討する.

2. 実験方法

積層膜は UHV スパッタ装置を用いて MgO(001)基板上に製膜した. 膜構成は Mo(20 nm)/[Nd-Fe-B(30 nm)/Mo(t_{Mo} =0, 1 nm)/Fe-B(5 nm)/Mo(t_{Mo} =0, 1 nm)]₅/Mo(10 nm)である. T_s =300°Cで[Nd-Fe-B/Fe-B] 及び[Nd-Fe-B/Mo/Fe-B]を1周期として5周期繰り返し堆積し, 400°C $\leq T_a \leq 750$ °Cの範囲で真空中アニールした. 磁化曲線は VSM を用い,結晶構造と配向状態は XRD と TEM で, 膜厚は XRR で評価した. 膜表面形態は AFM で, 磁区像を MOKE で観察した. 3. 実験結果・考察

Fig.1 の 750°Cでアニールした Nd₂Fe₁₄B /Mo($t_{Mo} = 0, 1 \text{ nm}$)/Fe-B 積層 膜の面直方向(OOP)の磁化曲線から, Mo 中間層の無い $t_{Mo} = 0 \text{ nm}$ の積 層膜における約 1 kOe の保磁力 H_c が, Mo 中間層を導入した $t_{Mo} = 1 \text{ nm}$ の積層膜では約 5 kOe へ増大していることが分かる.後者の積層膜の 断面 TEM 観察から Nd₂Fe₁₄B の形成が確認されており,この面直方向 の初磁化曲線の放物線形状と減磁曲線の良好な角型性は、ピン留め型

Fig.1 Magnetization curves for the Nd-Fe-B/Mo(t_{Mo})/Fe-B multilayers with (a) t_{Mo} = 0 nm and (b) t_{Mo} = 1 nm annealed at T_a =750°C.

の保磁力発生機構と Mo 中間層を介した Nd₂Fe₁₄B 層と Fe-B 層間の交換結合状態を示唆している. この結果は軟磁性相に Fe-B 合金を用いた場合でも、1 nm 厚の Mo 中間層の導入が既報 [4] と同様に Nd₂Fe₁₄B 相生成と両層間の正の交換結合を維持するのに有効であることを示している. References

[1] Y. Toga, H. Moriya, H. Tsuchiura, and A. Sakuma, J. Phys.: Conf. Series 266 (2011) 012046..

[2] D. Ogawa, K. Koike, S. Mizukami, M. Oogane, Y. Ando, T. Miyazaki, and H. Kato, *J. Magn. Soc. Jpn.* 36, (2012) 5.

[3] D. Ogawa, K. Koike, S. Mizukami, T. Miyazaki, M. Oogane, Y. Ando, and H. Kato, Appl. Phys. Lett., 107, (2015) 102406.

[4] K. Kobayashi, D. Ogawa, K. Koike, H. Kato, M. Oogane, T. Miyazaki, Y. Ando and M. Itakura, J. Phys: Conf. Ser., in press.

謝辞:本研究の一部は JST 産学共創基礎基盤研究プログラム「革新的次世代高性能磁石創製の指針構築」および JSPS (基盤研究(B) No.16H04488)の助成を受けて行われた.

2 段階熱処理を用いて作製した異方性 Sm-Co/α-Fe ナノコンポジット厚膜磁石の磁気特性

前畠悠雅、古川雄也、柳井武志、中野正基、福永博俊 (長崎大学)

Magnetic properties of anisotropic Sm-Co/ α -Fe nanocomposite thick film-magnets prepared by two-step annealing Y. Maehata, Y. Furukawa, T. Yanai, M. Nakano, H. Fukunaga (Nagasaki University)

はじめに

Sm-Co/α-Fe ナノコンポジット磁石は高温下で使用可能 な高性能磁石として注目されている。我々は等方性 Sm-Co/α-Fe ナノコンポジット磁石で 100 kJ/m³の最大エネル ギー積を報告しており^[1]、異方化によりさらなる磁気特性 の向上が期待される。異方性磁石は加熱基板に成膜するこ とによって得られるが、長時間(60 min)の加熱によって Sm-Co 層と α-Fe 層間で原子拡散が起こり、積層構造が破 壊される。一方、Nd-Fe-B 系磁石では 2 段階熱処理により 異方性磁石が得られることが知られている^[2]。本研究では、 2 段階熱処理を用いて異方性 Sm-Co/α-Fe ナノコンポジッ ト厚膜磁石を作製し、その磁気特性を検討した。

実験方法

本研究では Sm_{1.9-2.3}Co₅ と α-Fe(25~50 vol.%)の複合ター ゲットを用いた。Nd:YAG レーザ (λ=355 nm) を 6.2~7.8 rpm で回転するターゲットに照射し、Ta 基板上に成膜し た。基板はジュール熱で加熱した。成膜後の磁石膜に熱処 理 (600 ℃で 0 min) を施すことで磁気的に硬化させた。

実験結果

Fig.1に作製した積層型 Sm-Co/α-Fe ナノコンポジット 磁石における残留磁気分極比(面内方向残留磁気分極/垂 直方向残留磁気分極)の Sm/(Sm+Co)依存性を示す。Sm 含 有量の減少に伴って残留磁気分極比が向上した。

Fig.1 中の A 及び B の試料の X 線回折図を Fig.2 に示 す。両試料で Fe と SmCo₃から回折線が観測されるが、B 試料において SmCo₃の(110)や(220)面のピーク強度が強い。 Sm 含有量の減少に伴う残留磁気分極比の向上は磁化容易 軸の面内配向によると考えられる。

Fig.1 中のCの試料の面内(a)と面直方向(b)のヒステリシ スループをFig.3 に示す。図中の斜線部の面内・面直の面 積差を異方性エネルギーと定義すると、異方性エネルギー は約240 kJ/m³程度となり、同様な方法で作製したSm-Co 単層の異方性磁石の持つ異方性エネルギー約400 kJ/m^{3[3]} と比較して半分程度の値であった。これは膜組成の半分程 度が Fe で置き換えられたことにより、異方性が損なわれたためであると考えられる。

Fig.2 XRD patterns of Samples A and B.

Fig.3 Hysteresis loops of Sample C.

[1] A. Tou, T. Morimura, M. Nakano, T. Yanai, and H. Fukunaga: J. Appl. Phys. 115, 17A748 (2014).

[2] Ya. L. Linetsky and N.V. Kornilov: J. Mater. Engineering and Performance 4, 188 (1995).

[3] Y. Furukawa, H. Koga, T. Yanai, M. nakano, H. Fukunaga: 第 39 回 日本磁気学会学術講演概要集 189, 10pA-9 (2015).

低酸素・微細 Zn 粉末による Sm-Fe-N 系 Zn ボンド磁石の高保磁力化

白岩知己 1, 西島佑樹 1, 松浦昌志 1, 手束展規 1, 杉本諭 1, 庄司哲也 2, 佐久間紀次 2, 芳賀一昭 2 (1東北大,2トヨタ自動車)

High coercive Sm-Fe-N Zn-bonded magnets prepared using Zn fine powders with low oxygen content Tomoki Shiraiwa¹, Yuki Nishijima¹, Masashi Matsuura¹, Nobuki Tezuka¹, Satoshi Sugimoto¹,

Tetsuya Shoji², Noritsugu Sakuma², Kazuaki Haga²

(¹Tohoku Univ., ²Toyota Motor Corporation)

緒言

高い飽和磁化,異方性磁場,ならびにキュリー温度を有するSm2Fe17N3化合物を主相とするSm-Fe-N系Znボンド磁石 は、高耐熱ボンド磁石としての利用が期待されている.この磁石の保磁力を向上させるためには、Sm-Fe-N系粒子表面に 現れるα-Feを Zn と反応させ非磁性化することで、α-Feを低減させる必要がある.そこで、Zn 粉末に含まれる酸素量の低 減およびZn粉末の微細化が考えられ、これによってZnとα-Feの反応促進や組織の均一性向上が期待される.本研究では、 水素プラズマ金属反応法(HPMR法)により低酸素・微細Zn粉末を作製し、それを用いて作製したボンド磁石の磁気特性を 調べた.

実験方法

HPMR 法を用いて,水素分圧 PH2 = 20%,アーク電流値 I = 100 A の条件で Zn 粉末を作製した.これと Sm-Fe-N 系粉 末をボールミルにより回転速度 150 rpm,回転時間 30 min の条件で混合し, 15 wt.%Zn の混合粉末を作製した.また,比 較のため市販 Zn 粉末(高純度化学社製およびイーエムジャパン社製)を用いて同様の混合粉末を作製した. その後 2.3 MA・ m⁻¹の磁場中, 200 MPa で圧粉体を作製し, Ar ガス雰囲気で 445 °C, 30 min の熱処理をすることにより Sm-Fe-N 系 Zn ボ ンド磁石を作製した.磁気特性はBHトレーサー及び VSM で、また粉末粒径はレーザー回折法ならびに TEM 像より求め た. さらに酸素分析は O/N 分析装置で、結晶構造は XRD で評価し、組織は SEM および TEM で観察した.

実験結果

Fig. 1 に, HPMR 法を用いて作製した Zn 粉末の TEM による観察像 を示す. Fig. 1 より, 数十~数百 nm の粒径であることが分かり, 200 個 の平均値より求めた一次粒子のメディアン径(d50)は0.228 µm であった. また、この Zn 粉末の酸素量は 0.068 wt.%であった. それに対して市販 のZn粉末のd50は、高純度化学社製が3.18 µm、イーエムジャパン社製 が 0.140 µm であり, 酸素量はそれぞれ 0.75 wt.%および 1.5 wt.%であ った. 一方、レーザー回折法を用いた粒径評価の結果、各 Zn 粉末のメ ディアン径(D₅₀)はそれぞれ 0.931 µm, 3.29 µm, 3.41 µm であり, 共に 一次粒径より大きかったことから、Zn 粉末は二次粒子を形成している ことが分かった.

500 nm

これら Zn 粉末を用いて Sm-Fe-N 系 Zn ボンド磁石を作製したとこ ろ、HPMR 法により作製した低酸素・微細 Zn 粉末を用いたボンド磁石

Fig. 1 Transmission Electron Microscope (TEM) image of Zn fine powder fabricated by Hydrogen Plasma Metal Reaction (HPMR) method.

における保磁力は約33 kOe に達し、市販のZn 粉末を用いて作製したボンド磁石と比べ、高い保磁力を示すことが分かっ た. さらに、180 °C でも 15 kOe を超える保磁力を有することが分かった.

謝辞

Sm-Fe-N 系粉末をご提供頂きました、日亜化学工業株式会社様に御礼申し上げます.

また、本成果の一部は、国立研究開発法人新エネルギー・産業技術開発機構(NEDO)委託事業「未来開拓研究プロジェク ト/次世代自動車向け高効率モーター用磁性材料技術開発プロジェクト(MagHEM)」ならびに、科研費(16K14431)で得られ たものである.

Ca 還元拡散法による MnAl 合金粉末の合成

佐藤卓、門田祥悟、入江周一郎 (TDK 株式会社) Synthesis of MnAl alloy powder by Ca reduction diffusion process S. Sato, S. Kadota, S. Irie (TDK Corporation)

<u>はじめに</u>

τ-MnAlは 1958 年代に発見され¹⁾、1980 年代には量産化・商品化に成功している比較的歴史ある磁石材料 である。しかしながら、その磁気特性は第一原理計算による理論予測²⁾を下回っており、興味ある研究対象 である。加えて、近年の希土類元素の供給不安から希土類を含まない高性能磁石としても注目を集めている。

τ-MnAlの高保磁力化の一つの方策として、粒子の微細化がある。実際、メカニカルアロイング法において 作製された微細な MnAl 合金粉末において従来³⁾よりも大きな保磁力 4.8 kOe が報告されている⁴⁾。そこで、 我々は MnAl 合金粉末の微細化のための手法として、還元拡散法に注目して研究を行った。本発表では、Ca 還元拡散法により合成された MnAl 合金粉末の磁気特性及び微細構造について報告する。

<u>実験方法</u>

Mn と Al の原子比率が Mn : Al = x : 100 - x (x = 50.0, 52.5, 55.0, 57.5)になるように MnO 原料と Al₂O₃原料を 秤量し、ボールミルにて混合した。混合試料を乾燥させた後に金属 Ca フレークを加え、Ar 雰囲気の管状炉 で 1100℃2h の熱処理を行い、炉内から試料を引き出し Ar ガス急冷処理した。その後、得られた試料の CaO を除去し、再度 Ar 雰囲気の管状炉にて 400,500,600℃0.5h の熱処理をした。得られた試料の相同定は XRD を 用い、磁気特性は VSM を用いて評価した。

<u>実験結果</u>

Fig. 1 に、x = 50.0 - 57.5 における 1100°C2h 熱処理後の試料に おける XRD パターンを示す。いずれの試料も、酸化物原料の Ca による還元反応により生成される CaO に加え、MnAl 合金相 が生成されていることがわかる。得られた MnAl 合金相として は、急冷処理により高温安定相である ϵ -MnAl 相や τ -MnAl 相が 確認される一方で、低温安定相である β -MnAl (Mn₃Al₂) 相や γ_2 -MnAl (Mn₅Al₈) 相も確認された。低温安定相は、x が小さい 場合は γ_2 相が、x が大きい場合は β 相が生成しやすい傾向にあっ た。

次に、得られた ϵ 相を τ 相に相転移させるために x = 55.0 の試 料に 400 - 600 $^{\circ}$ C0.5h の熱処理を行い得られた試料の磁気特性を Fig. 2 に示す。熱処理前の磁気特性は、最大磁化が 16.4 emu/g、 保磁力は 1.38 kOe から、400 $^{\circ}$ C0.5h の熱処理により、最大磁化 は 28.7 emu/g、保磁力は 1.22 kOe となり、最大磁化は 75%程度 向上したが、保磁力は減少した。さらに熱処理温度 500, 600 $^{\circ}$ C では、最大磁化が 23.0, 22.0 emu/g となり、減少する傾向あった。

<u>参考文献</u>

- 1) H. Kono, J. Phys. Soc. Jpn., 13, 1444(1958).
- 2) A. Sakuma, J. Phys. Soc. Jpn., 63, 1422(1994).
- 3) T. Ohtani et al., IEEE Trans Mag., MAG-13, 1328(1977)
- 4) Q. Zeng, I. Baker and Z. C. Yan, J. Appl. Phys., 99, 08E902(2006).

Fig.1 XRD patterns of MnAl powders (x = 50 - 57.5)

Fig. 2 MH curves of annealed samples (x = 55)

めっき法により作製した Fe-Pt 磁石膜のクラック低減

柳井武志,本多純也,濱村陵,眞崎太郎,高嶋恵佑,中野正基,福永博俊(長崎大学) Reduction in cracks of Fe-Pt film-magnets prepared by an electroplating method Takeshi Yanai, Junya Honda, Ryo Hamamura, Taro Masaki, Keisuke Takashima, Masaki Nakano, Hirotoshi Hukunaga (Nagasaki University)

はじめに

Fe-Pt 磁石は優れた磁気特性に加え,高い耐食性や生体適合性を有すため医療・歯科用デバイスへの応用が 期待される。我々のグループは過去に、永久磁石膜の医療・歯科用応用を鑑みた電解めっき法による Co-Pt 系磁石膜作製に関する検討を行い、定電位法を用いた塩基性めっき浴(pH = 8)から保磁力 800 kA/m、膜厚 1 µm 程度の Co-Pt 磁石膜を実現した¹⁾。最近我々は、Co-Pt 合金よりも飽和磁気分極の高い Fe-Pt 合金にて、 ①クエン酸をベースとする酸性浴を用いること、②めっき時に 1 A/cm² の高電流密度を適用した定電流法を用 いること、など従来とは異なる成膜アプローチにより、厚さ 20 µm 程度までの厚膜化および保磁力 800 kA/m 程度の硬磁気特性の発現を実現した²⁾。酸性浴の適用により厚膜化を実現したものの、熱処理後の試料の表 面には多くのクラックが観測され、その低減が必要な状況であった。そこで本稿では、基板の種類に着目し、

クラック低減の可能性を検討したのでその結果を報告する。

実験方法

Fe-Pt 膜の成膜には、ジニトロジアミン白金(10 g/L)、硫酸鉄、塩 化アンモニウム(25 g/L)、クエン酸(30 g/L)を用い、硫酸鉄量によっ て膜組成を Fe₅₀Pt₅₀ に調整した。陽極には Pt メッシュを、陰極兼基 板には従来用いていた Ta 板の他に、Ti, Co, Ni, Cu の各板を用いた。 浴温度 70°C,電流密度 1 A/cm² の条件にて定電流めっきを行った。 成膜後の Fe-Pt 膜を磁気的に硬化させるため 700°C, 60 min の真空 中熱処理を施した。

実験結果

Fig.1 に Ta 基板に成膜した熱処理後の Fe₅₀Pt₅₀ 膜と Cu 基板に成 膜した熱処理後の Fe₅₀Pt₅₀ 膜の表面 SEM 像を示す。Fig.1 より, Cu 基板を用いることでクラックが低減することが了解される。その 他の基板に関しては, Ti 基板は Ta 基板と同程度の表面状態, Co や Ni 基板は Cu 基板よりも若干クラックが多い結果となった。定 量的な評価を行うため,表面粗さ *R*_aを取得し,基板の線膨張率と の関係を調べたところ,線膨張率が 10⁻⁵ K⁻¹よりも大きな基板 (Co, Ni, Cu)を用いることで,クラックの少ない Fe-Pt 膜が得られるこ とがわかった。本結果は, Fe-Pt 膜と基板の熱膨張率の差がクラッ ク発生の要因であることを示唆するものである。

Fig.2 に保磁力の Fe 組成依存性を示す。得られた保磁力の最大値 はともに 800 kA/m 程度であり、基板の変更によって、大きく保磁 力が低下することはないことがわかった。

<u>参考文献</u>

- 1) N. Fujita et al., J. Magn. Magn. Mater., 272–276 (2004) e1895.
- 2) T. Yanai et al., AIP Advances, 6 (2016) #056014.

Fig.1 SEM images of the annealed $Fe_{50}Pt_{50}$ films.

Fig.2 Coercivity of the annealed $Fe_{50}Pt_{50}$ films as a function of Fe content.

Effect of target composition on the barium hexaferrite (0001) thin films

Ritesh Patel¹, Yuma Ikeda¹, Sonia Sharmin¹, Eiji Kita^{1, 2}, and Hideto Yanagihara¹

¹⁾ Division of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

²⁾ National Institute of Technology Ibaraki College, Hitachinaka, Ibaraki 312-8508, Japan

Barium hexaferrite (BaFe₁₂O₁₉; BaM) is a magnetic oxide with the magnetoplumbite structure which has a hexagonal close-packed (hcp) oxygen frame-work structure [1]. In our previous report, the BaM(0001) thin films grown by using stoichiometric (BaFe₁₂O₁₉) target shows lower saturation magnetization (M_s)[2]. The reason for lower M_s is due to change in the composition ratio (Ba:Fe) in the deposited thin films. For applied purposes, the high quality thin film growth technique is required to achieve large magnetization comparable to the bulk. Nevertheless to say, fundamental physical properties of a film are strongly dependent on chemical composition if the film is alloy or compound. In the present study, BaM thin films were investigated by changing target composition to observe the effect on the magnetic properties.

The barium hexaferrite (BaM) (0001) epitaxial thin films were deposited on an α -Al₂O₃(0001) substrate by radio frequency (RF) magnetron sputtering. Barium-rich (BaFe₁₀O_x) target with a diameter of 68 mm was used. The flow rate of Ar was 10 sccm; total pressure inside the sputtering chamber was maintained at 0.41 Pa. Before the deposition, the substrate was annealed under vacuum at the growth temperature of 800 °C for 1 hour. The RF power of the sputtering process was set at 50 W. The BaM(0001) thin films of 23.5, 54.7, 73.6, 104, and 140 nm thicknesses were deposited. The BaM(0001) thin films were post-annealed in the atmosphere at 1000 °C for 10 minutes.

Figure 1(a)-(f) Shows typical θ -2 θ XRD patterns of a sapphire substrate and BaM thin films of different thicknesses after post-annealing. The dominant reflection peaks are (006), (008) and (0014), which indicate excellent *c*-axis orientation. However, at a higher thickness of 140 nm, BaM thin film shows the additional peaks supposedly assigned as (105), (207), and (315) with very low intensity. It is also found that the value of the lattice parameter *c* of the BaM thin films deviates from its bulk value 23.18 Å [ICDD PDF 01-084-0757] are shown in Fig. 1(g). In all samples of BaM(0001) thin films using the position of (008) bragg peak, the obtained value remains in the range of 23.1 to 23.18 Å. This indicates the crystallites of the thin films are under some strain. The BaM(0001) thin film of thickness 104 nm shows saturation magnetization (out-of-plane) of 379 emu/cm³, which is comparable to that of the bulk value of $M_s = 380$ emu/cm³[1]. Although the M_s in the case of stoichiometric target thin films remains almost constant (~300 emu/cm³) for all films [2]. The increased M_s suggest that the strong dependence on the target composition. On the other hand effective uniaxial magnetic anisotropy ($K_u^{\text{eff.}}$) shows the similar trend in both cases.

Fig. 1(a) XRD patterns of a sapphire substrate, (b-f) XRD patterns of BaM thin films with thickness of 23.5, 54.7, 73.6, 104 and 140 nm after post-annealing, (g) Plot of saturation magnetization (M_s) (out-of-plane), effective uniaxial anisotropy ($K_u^{\text{eff.}}$) and c-axis lattice parameter of BaM(0001) vs different thickness.

Reference

- 1) B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials (Wiley, New York, 2009).
- 2) Y. Ikeda et al, The 64rd JSAP Spring Meeting, **14p** (2017) P10-52.

La-Co 共置換 M 型フェライトの Co の価数・スピン状態:

⁵⁹Co-NMR による研究

中村裕之,高尾健太,岡崎秀祐,和氣剛,田畑吉計,酒井宏典*,C.Meny** (京大工,*原子力機構,**IPCMS)

Valence and spin states of Co in La-Co cosubstituted M-type ferrite: ⁵⁹Co-NMR study H. Nakamura, K. Takao, S. Okazaki, T. Waki, Y. Tabata, H. Sakai*, C. Meny** (Kyoto Univ, *JARA, **IPCMS)

<u>はじめに</u>

La-Co 共置換 M 型 Sr フェライト Sr_{1-x}La_xFe_{12-y}Co_yO₁₂ の x > y の試料に対する ⁵⁹Co-NMR 実験で は、少なくとも 3 種の信号が観測される(占有サイトが 3 種以上ある)が、特に低周波域(90 MHz 付近)の最も強い信号の帰属・解釈に曖昧さを残していた [1]. そこで、x > yの試料以外に組 成の異なる 2 試料を用意し、それらの比較実験から低周波信号の帰属の解明を試みた.

<u>実験方法</u>

使用した試料は全て Na₂O フラックス法で作製した単結晶を粉末にしたものである.2 試料の一方は $x \ge y$ がほぼ等しい試料(育成時の酸素分圧 1 atm).他方は Co のみ置換した試料(x = 0)である.ゼロ磁場の広周波数域 NMR 実験は Strasbourg の IPCMS の無同調広帯域装置を用いて行い,Co のみ置換試料の低周波域 NMR 実験は原子力機構および京大で行った.

実験結果

図にゼロ磁場スペクトルの結果を示す. La-Co 共置換試料では $x > y \ge x = y$ で強度比も含めてほ ぼ同じ結果が得られた. S2, S3 の共鳴周波数は Co²⁺ のスピン磁気モーメント 3 μ B に順当な値であ る (⁵⁹Co の核磁気回転比 10.03 MHz/T). S1 の共鳴周波数が異常に小さい解釈としては,低スピ ン状態の Co³⁺ が存在する可能性と, Co²⁺ の信号であるものの軌道モーメントがつくる磁場とスピ

ンモーメントが磁場が相殺し内部磁場が小さくなっ ている可能性(通常スピン成分の超微細結合定 数は負で軌道成分のそれは正),が残されていた [1]. y/x 比の異なるLa-Co 共置換 2 試料の結果が ほぼ同じであるという事実は,S1,S2,S3 の信 号が全て Co²⁺ 由来の信号であることを示唆す る.また,Coのみ置換の試料中にはCo³⁺のみが 存在すると考えられるので,同試料で S1,S2, S3 のいずれも観測されないという事実も,S1, S2,S3 が全てCo²⁺ 由来であることを示唆する. 結局,S1 の共鳴周波数が異常に小さい理由とし てスピン・軌道磁場相殺説が有力となった.ま た,Co のみ置換試料ではさらに低い周波数に信 号が観測されることから,その試料中の Co³⁺ は 低スピン状態にある可能性が大きい.

[1] H. Nakamura et al., J. Phys.: Condens. Matter 28 (2016) 346002

⁵⁷Fe-NMR による M型 Ca-La フェライトのスピンフリップ転移の観測

高尾健太, 宇治克俊, 和氣剛, 田畑吉計, 中村裕之

(京都大学)

Observation of Spin Flip Transition of Ca-La M-type Ferrite by ⁵⁷Fe-NMR K.Takao, K. Uji, T. Waki, Y. Tabata, and H. Nakamura (Kyoto Univ.)

(Ryoto Oniv.

1 背景

六方晶マグネトプランバイトフェライト(M型フェライト)は c 軸が磁化容易軸の一軸異方的なフェリ磁性体で,安価で化学的 に安定なため,永久磁石材料として大量に用いられている。現行のフェライト磁石の母材は M型 Sr フェライトに La-Co 共置換 し,保磁力を増大したものが主流であるが¹⁾,近年,La-Co 置換をした M型 Ca フェライトが Sr 系に較べて約 20% 保磁力が増大 するという報告がなされ²⁾,興味が持たれている。一方,化合物としての M型 Ca フェライトについては,CaFe₁₂O₁₉ は平衡状態 図上に存在せず,CaとLaの混晶系が安定することは知られていたが,詳細な相安定性や物性などの基本的性質は明らかではな かった。最近我々は M型 Ca-La フェライトの安定組成を明らかにし,また単結晶を得ることに成功した⁴⁾.単結晶試料を用いた 磁化測定からは,磁化困難軸方向においてメタ磁性転移が起こることを明らかにした。通常の一軸反強磁性体の場合,メタ磁性転 移は磁場を磁化容易軸にかけたときに起こるが,本系では磁化困難軸方向にかけたときに起こることが特異的である。我々はこれ までに M型 Ca-La フェライト単結晶試料の⁵⁷Fe-NMR 測定を行い,磁場中で磁気構造が変化することを報告している⁵⁾.本研究 では,メタ磁性転移と磁気構造変化の相関を微視的に解明するため,単結晶試料を用いて、詳細な磁化困難軸方向の⁵⁷Fe-NMR ス ペクトル測定を行った。

2 実験方法

M型 Ca-La フェライトの単結晶試料は自己フラックス法により作製した。測定に用いた単結晶試料の組成は波長分散型 X 線分光 (WDX) で決定し Ca_{0.59}La_{0.51}Fe_{11.91}O₁₉ であった。また,磁化測定からその試料のメタ磁性転移磁場は 0.8 T (5 K) であった。 ⁵⁷Fe-NMR には平板状の単結晶試料を用い,外部磁場を c 軸に垂直に印加した。H = 0 - 2 T の範囲で磁場を固定し、各磁場で周 波数掃引スペクトルを測定した。

3 結果および考察

Figure 1 は *T* = 4 K で測定した,各磁場での周波数掃引スペクトルである. *H* = 0 T では,測定範囲内に 5 つのピークを観測した.高周波側から Fe の 4*f*₂, 2*a*, 4*f*₁, 12*k* 各サイトからの信号に帰属される. X と表示された信号は,通常の M 型フェライトの NMR スペクトルに相当するものがなく, Ca-La が混晶しているために生じたサテライトピークと考えられる.磁場をかけていくと,各ピークは磁気モーメントの方向に応じ,高周波側 (4*f*₁, 4*f*₂ down spin),低周波側 (12*k*, 2*a* up spin) ヘシフトするが,メ タ磁性転移磁場付近 (0.7 - 0.8 T) で大きく変化し, 0.8 T のスペクトルは高磁場相と低磁場相の成分が共存している.高磁場相では, 2*a*, 4*f*₁, 4*f*₂ 各サイトの信号は 1 本づつであるのに対し, 12*k* でのみ 3 本に分裂して観測された.

 $2a, 4f_1, 4f_2$ サイトは軸対称である一方, 12k サイトは軸性ではない. 磁気モーメントが c 軸を向いているときはどの各 Fe サイトでも内部 磁場が等価であるためスペクトルは 1 本しか観測されない. 一方, 磁 気モーメントが c 面内に向くと $2a, 4f_1, 4f_2$ サイトでは軸性のため信 号の分裂はないが, 12k サイトは非等価になるため信号は 3 本に分裂 する. つまり, スピンフリップが起こったことを示している.

最近、各 Fe サイトで $3d^{6}(Fe^{2+})$ の状態についてスピン軌道相互作用 を考慮した磁気異方性エネルギーの計算がなされ、 $2a \ge 12k$ サイト では c 軸およびその垂直方向の 2 箇所に極小が現れることが示された ⁶⁾. M 型 Ca-La フェライトは Fe²⁺ が存在するため、その Fe²⁺ の特異 な異方性がスピンフリップの起源となっているものと考えられる.

References

- 1) K. Iida et al., J. Magn. Soc. Jpn. 23 (1999) 1093.
- 2) Y. Kobayashi et al., J. Jpn. Soc. Powder Powder Metall., 55 (2008) 541.
- 3) N. Ichinose and K. Kurihara, J. Phys. Soc. Japan. 18 (1963) 1700.
- 4) K. Uji et al., J. Solid State Chem., 245 (2017) 17.
- 5) 高尾健太ら, 第 39 回 日本磁気学会学術講演会 9pA-1 (2015).
- 6) 井上順一郎 (private communication)

Fig.1 M型 Ca-La フェライト単結晶試料の磁場中 ⁵⁷Fe-NMR スペクトル

SrZn_xMn_{2-x}-W型六方晶フェライトの磁気物性と局所構造

大田 慧, 中川 貴, 小林 義徳*, 代永 彩夏, 清野 智史, 山本 孝夫 (大阪大学,*日立金属)

Study on magnetic properties and local structure of $SrMn_xZn_{2-x}$ -W-type hexagonal ferrite

K. Ota, T. Nakagawa, Y. Kobayashi*, A. Yonaga, S. Seino, T. A. Yamamoto

(Osaka University, *Hitachi Metals, Ltd.)

研究目的

フェライト磁石は、低コストで化学的に安定な特長を持つため、モーター用途として多く利用されている。SrMe2-W 型フェライト(SrMe₂Fe₁₆O₂₇、Me²⁺:2価の金属イオン)は、Me²⁺ = Fe²⁺の場合¹⁾Sr -M型フェライト(SrFe₁₂O₁₉)よりも飽 和磁化が約10%高く、異方性磁界はSr-M型フェライトと同等なため、次世代の磁石材料として期待される。Fe²⁺よりも Mn²⁺は磁気モーメントが大きいことに着目して、SrMn_xFe2.x-W型フェライトの飽和磁化を調査し、Mnの置換量が増え るにつれて磁化が低下することを報告した²⁾。その原因として、結晶格子内において Mn²⁺は、ダウンスピンサイトに占 有するためと考察した。そこで、ダウンスピンサイトへの優先占有が示唆される Zn を部分置換することで³、Mn をアッ プスピンサイトに占有させ、磁化を向上させることを目指した。本研究では、SrZn,Mn2,-W型フェライトの物性評価と ZnとMnの占有サイトの解析により、磁気物性と局所構造との相関関係を検証した。

実験

組成が SrZn_xMn_{2-x}-Fe₁₆O₂₇(x = 0, 0.5, 1, 1.5, 2)となるように、α-Fe₂O₃、SrCO₃、ZnO、Mn₂O₃を秤量し、ボールミル (湿式)で2h混合した。乾燥した混合試料を坩堝に入れ、焼成温度を1523~1623K、大気分圧で10h焼成を行った。 得られた焼成粉について、PPMS (Quantum Design)を用いて3Kの飽和磁化を、超伝導 VSMを用いて室温で異方 性磁界を評価した。また、あいちシンクロトロンの BL5S2 で放射光 X 線回折を行い、リートベルト解析にて構造解析を 実施した。さらに、SPring-8の BL01B1 で、広域 X 線吸収微細構造(EXAFS)測定を実施した。

実験結果

図1に作製した5試料の放射光X線回折パターンを示す。角度分解能の高い放射光X線回折測定においても、 W型単相と見なせる試料が作製できていることがわかった。図2にZnの置換量に対する、3Kの飽和磁化と室温の 異方性磁界の変化を示す。Znの置換量の増加に伴い、飽和磁化は増加した。このことから、ダウンスピンサイトへの Znの占有が示唆された。また、異方性磁界はx=1.0の試料で最小値となった。図3にリートベルト解析から得た、 Zn の占有数の変化を示す。この結果からもダウンスピンサイトへの Zn の占有が示唆された。当日は、放射光 X 線回折のリートベルト解析と、EXAFS により解析した Mn と Zn の占有サイトと磁気物性との相関について議論する。

1100

Fig1. Synchrotron X-ray diffraction pattern of SrZn_xMn_{2-x}Fe₁₆O₂₇

参考文献

- 1) 佐川 眞人:永久磁石 -材料科学と応用-, pp.188, 2007.
- 大田 慧: 粉体粉末冶金協会講演概要集 平成 28 年度春季大会 (2016) P.15. 2)

140

මු¹³⁰

代永 彩夏: 日本磁気学会講演概要集 平成 28 年度秋季大会 (2016) P. 141. 3)

Fe-Ni めっき膜の磁気特性に与える塩化物イオンの影響

柳井武志,杉原健太,幸田一輝,江口和樹,高嶋恵佑,中野正基,福永博俊(長崎大学) Effect of chloride ions on coercivity of electroplated Fe-Ni films Takeshi Yanai, Kenta Sugihara, Kazuki Koda, Kazuki Eguchi, Keisuke Takashima, Masaki Nakano, Hirotoshi Hukunaga (Nagasaki University)

はじめに

めっき法は常温・常圧下で成膜が可能であり、装置も簡便であることから、磁性膜作製の手段として一つ の有望な成膜方法である。本研究室ではこれまでに、センサ応用を鑑みた膜厚 10-20 µm 程度の Fe-Ni 系軟磁 性めっき膜に関して、様々な検討・報告を行ってきた¹⁻²。工業的な Ni めっきで広く用いられるワット浴で は、陽極の Ni の不動態化抑制のため、例えば塩化ニッケルなどを用いて塩化物イオンがめっき浴へ供給され る。一方で、過剰な塩化物イオンはめっき膜の内部応力を増加させることも知られており、磁気歪み現象を 特徴とする強磁性体のめっき膜の磁気特性は塩化物イオンに影響を受けると予想される。我々のめっき膜作 製過程においても通常陽極に Ni を用いることから、塩化物イオンは磁気特性に影響を与えると考えられる。 そこで本稿では、塩化物イオン濃度を変化させためっき浴から Fe-Ni 膜を作製し、熱処理前後の保磁力の挙 動に与える塩化物イオン濃度の影響を検討したのでその結果を報告する。

実験方法

Fe-Ni 膜の作製には定電流めっき法を用いた。Ni や Fe イオンの供給源には硫酸ニッケル,硫酸鉄や塩化 鉄を使用した。塩化鉄はめっき浴内の塩化物イオン濃度を変化させるために用い,硫酸鉄を置換する形で加 えた。その他,めっき浴にはクエン酸(10 g/L),サッカリンナトリウム(5 g/L)および NaCl(50 g/L)を添

加した。陽極には Ni 板, 陰極には Cu 板を用い, 15×5 mm²の Fe₂₂Ni₇₈膜を Cu 板上に成膜した。電流密度は 0.2 A/cm², 浴温度 は 50°C, 成膜時間は 5 min とした。軟磁気特性改善を目的に成 膜後の試料に 300°C, 60 min の真空中熱処理を施した。

実験結果

Fig.1 に保磁力の塩化鉄置換量依存性を示す。Fig.1 には熱処理 前後の結果を示した。塩化鉄置換による膜組成の変化は観測さ れず,Fe₂₂Ni₇₈付近の組成であった。熱処理前の試料においては 塩化鉄量の増加に伴い保磁力の増加が観測され,熱処理後はほ ぼ一様の値を示した。本結果より,熱処理を用いない場合は塩 化鉄置換が少ない(塩化物イオン濃度が低い)めっき浴からの 試料作製が低保磁力を得る観点からは有利であることがわかっ た。Fig.2 に XRD パターンとシェラーの式から算出した熱処理 前後の試料の結晶粒径を示す。熱処理前の試料では,塩化物イ オン濃度が低い時に粒径が小さくなる傾向が得られ,微細な粒 径が as-plated 状態での低保磁力に寄与したと考えられる。また, 塩化物イオン濃度が高いほど熱処理後の粒径は小さな値となっ た。これらの結果は,塩化物イオンが軟磁気特性やミクロ構造 に影響を与えることを示唆しており,その関連性に関しては現 在検討を継続している。

参考文献

- 1) T. Shimokawa et al., IEEE Trans. Magn., 48 (2012) 2907.
- 2) T. Yanai et al., IEEE Trans. Magn., 50 (2014) #200703.

Fig.1 Coercivity of the as-plated $Fe_{22}Ni_{78}$ films and the annealed ones as a function of FeCl₂ in the plating bath.

Fig.2 Grain sizes of the as-plated $Fe_{22}Ni_{78}$ films and the annealed ones as a function of $FeCl_2$ in the plating bath.

高純度 Fe-(3-7)wt%Si 合金の磁気特性

中川翔太*、松山和樹*、佐々木巌*、開道力**、竹澤昌晃***、堀部陽一***、惠良秀則***、波多聡****、 久保臣悟****、小川俊文*****

(*九工大生命体、**北九州高専、***九工大工、****九大総理工、

*****鹿大研究推進機構、*****福岡県工技セ機電研)

Magnetic Properties on Fe-(3-7)wt%Si alloys using High Purity Metallurgy

S. Nakagawa, K. Matsuyama, I. Sasaki, C. Kaido, M. Takezawa, Y. Horibe, H. Era, S. Hata, S. Kubo,

T. Ogawa

(*****Kyushu Inst. of Tech, **Kitakyushu National Coll. of Tech., ****Kyushu Univ. *****Kagoshima Univ., *****MERI-FITC)

はじめに 珪素鋼板の特性向上の新たな指針を得るため、その母合金である Fe-Si 合金を高純度化し、特性を調べてきた。前報¹⁾では高純度 Fe-(4-6)wt%Si 合金の磁気特性を中心に解析・考察し,さらに詳細を報告してきた^{2),3)}。しかしながら、この組成範囲では商用化している Fe-3wt%Si との比較や最良の軟磁気特性を持っといわれている Fe-6.5wt%Si における高純度化の効果がわかっていない。本報告では、高純度 Fe-3wt%Si、Fe-6.5wt%Si および Fe-7wt%Si の試料を作製し、測定・解析することにより、珪素鋼板で議論される組成範囲での高純度化による効果を検討し、新たな特性向上策に資する事を目的とした。

実験方法 試料作製方法および磁気測定方法は前報¹⁾と同じである。予め結晶方位解析した試料を Kerr 効果顕微鏡にて磁区挙動観察した。さらに Lorentz 電子顕微鏡により磁区挙動観察および結晶相同定を行った。

実験結果 Table 1 に磁気測定より得られた保磁力、60 Hz におけるヒステリシス損、最大透磁率などの磁気特性を示す。軟磁気特性として 6.5wt%Si 含有試料が最も優れるだけでなく、高純度化により特性が向上している事もわかる。Si 量が 3wt%から 6wt%への増加に伴い軟磁気特性が一様に向上しない事も注目される。 7wt%Si 含有試料は急激に透磁率が低下するものの、保磁力やヒステリシス損は 6.5wt% と同等であり、軟磁性材料として可能性があると言える。講演ではこれら磁気特性の詳細な解析や磁区の動的特性へ及ぼす影響なども議論する。

Si content	Coercivity	Hysteresis loss	Max.permiability
	(A/m)	(W/kg)	$(\times 10^{3} \text{H/m})$
3wt%	14.96	0.750	8.14
4wt%	14.64	0.742	7.87
5wt%	17.50	0.704	7.05
6wt%	10.64	0.507	9.96
6.5wt%	7.76	0.389	36.80
7wt%	7.70	0.482	3.56

Table 1 Magnetic properties of high purity Fe-(3-7)wt%Si

謝辞 本研究の一部は、文部科学省ナノテクノロジープラットフォーム事業課題として九州大学微細構造 解析プラットフォームの支援を受けて実施されました。また、超高分解能走査電子顕微鏡を使用させていた だいた鹿児島大学自然科学教育研究支援センター機器分析施設に感謝します。

参考文献

- 1) レイ チェら: 第38回日本磁気学会学術講演概要集 2aE-7 (2014) p.85
- 2) Z. Lei et al.: Physics Procedia, **75**, 695 (2015)
- 3) Z. Lei et al.: J. Magn. Soc. Jpn., 40, 8 (2016)

アモルファス FeSiB 薄膜への Nb 添加効果

武内雄輝,藤原裕司,神保睦子*,前田浩二,小林正 (三重大工,*大同大) Influence of Nb addition on magnetic properties of FeSiB thin films Y. Takeuchi, Y. Fujiwara, M. Jimbo*, K. Maeda, T. Kobayashi (Mie Univ., Daido Univ.)

はじめに

アモルファス FeSiB 合金は高飽和磁化を示す軟磁性体であり,薄膜ヨークの有望な材料である.しかし磁 歪定数が大きく,各種センサなどへの加工時に導入される応力により磁気特性の劣化が懸念される.FeSiB 薄帯では Nb の添加により磁歪定数が減少することが知られている²⁾.本研究では Nb 組成を変化させた FeSiBNb 薄膜を作製し,その磁気特性,構造を評価したので報告する.

実験方法

成膜にはDC・RFマグネトロンスパッタリング装置を使用した.到達真空度は5.0×10⁴Pa以下であり, スパッタガス圧はAr0.43Paである.Fe77Si14B9合金上にNbチップを配置した複合ターゲットを使用し, Nbチップの数により組成を制御した.基板にはSi(100)を使用しており,液体窒素冷却した.成膜中の 液体窒素だまり下部の温度は約^{-10°}Cであった.膜厚は約300nmであり,表面にはSi₃N4を20nm堆積さ せている.細線状への加工はリフトオフにより行った.磁化特性はVSM,構造はXRD,飽和磁歪定数 は光てこ法で測定した.磁区観察には偏光顕微鏡を用いた.

実験結果

図1にNb0.0-10.0 at.%試料の保磁力Hcの熱処理温度依存性を 示す.As-dep.の試料では、概ねNbの増加ともにHcは減少する傾向にある.どの試料も熱処理とともにHcは減少し、350°Cから 550°Cで最小値(Hemin)を示している.これらの変化は、成膜時に 導入された応力が熱処理により緩和した結果であると考えられる. 飽和磁化 4π Ms はNbの増加にともない、14kGから 8kGまで減少 した.また、すべての試料において、結晶化温度以下の熱処理で は 4π Msに大きな変化は見られなかった.

図2は Hemin の Nb 組成依存性である. 一部組成については, as-dep.試料の飽和磁歪定数 λ sも示している. Hemin は Nb5.4at.%ま では単調に減少しているが,以降は大きな変化は見られない. ま た, λ sも Hemin と同様の傾向を示している. λ sの変化は Inomata らが報告している結果と同様であり,薄膜においても Nb が λ sの低 減に効果的であることがわかる. Hemin と as-dep.試料の λ sが同一 の傾向を示しており, Nb 添加による Hemin の減少は, as-dep.試料 の λ sに関係する可能性があるが, さらに検討が必要である.

当日は、細線状に加工した薄膜の磁気特性、偏光顕微鏡による 磁区観察の結果もあわせて報告する予定である.

<u>参考文献</u>

1) K. Inomata et al.: J.Magn. Magn.Mater., 31-34 (1983)1577.

Fig. 1 Hc as a function of annealing temperature.

Fig.2 Hc of optimally annealed samples and λs of as-deposited samples as a function of Nb content.

酸溶液処理表面修飾によるFe系アモルファス合金粉の高抵抗被膜形成

藪 直希*, 杉村 佳奈子*, 佐藤 敏郎*, 曽根原 誠*, 水嵜 英明*** (*信州大学, **長野県工業技術総合センター)

High resistive layer formation of Fe-based amorphous powder surface modified by acid solution process N. Yabu^{*}, K. Sugimura^{*}, T. Sato^{*}, M. Sonehara^{*}, H. Mizusaki^{**,*}

(*Sinshu University, **Nagano Prefecture General Industrial Technology Center)

はじめに

近年,高速スイッチング・低 ON 抵抗の特徴を有する SiC/GaN パワ ーデバイスが注目されており,スイッチング周波数を MHz 帯以上に 高周波化することで高効率と小型軽量を両立する DC-DC コンバータ の実現が期待される.しかしながら,数百 kHz 帯 DC-DC コンバータ に多用されているダストコアや Mn-Zn フェライトなどの磁心材料を MHz 帯スイッチングで使用することは困難であり,Ni-Zn フェライト 以外に選択肢がないのが実情である.筆者らは,MHz 帯磁心材料と して鉄系アモルファス合金粉(以下 Fe-AMO と記述)とエポキシ樹 脂からなる鉄系メタルコンポジット磁心を提案した^{1),2)}.磁心中の Fe-AMO 粒子を跨いで流れる渦電流の抑制を目的に,Fe-AMO 粒子表面 の熱酸化被膜形成方法を確立した²⁾.本稿では,酸溶液処理表面修飾 によって Fe-AMO 粒子表面を高抵抗化した手法について報告する.

実験方法

実験には水アトマイズ法で作製された平均粒径 2.57 µm の Fe-AMO 粉末(Fe-Si-B-C-Cr)を用いた.酸溶液処理は As-made Fe-AMO 粉末のリン酸処理および塩酸処理からなる.リン酸処理することで Fe-AMO 粒子表面から Fe が溶解し、リン酸鉄結晶が析出した.その後、塩酸処理することでリン酸鉄を溶解、除去した.リン酸水溶液の濃度は 0.25-6 [%]、処理時間は 6 h とした.塩酸水溶液の濃度は 2-5 [%]、処理時間は 0.5-4 [h]とした.

実験結果

Fig.1にリン酸処理を5%-6h,塩酸処理を5%-4hの条件で酸溶液 処理したFe-AMO粒子(以下,溶液処理Fe-AMO粒子)の断面SEM 像を示す.Fe-AMO粒子表面に2層の被膜が形成されていることが確 認できる.内側の被膜はリン酸処理,外側の被膜は塩酸処理により形 成される.酸溶液処理表面修飾によるFe-AMO粒子表面の高抵抗化 はFe ならびにSiの酸化物生成が寄与するとの考え方に基づき,Fe-2pおよびSi-2pをターゲットにしたXPSによる表面分析をした.Fig.

2 に As-made Fe-AMO 粒子, 溶液処理 Fe-AMO 粒子の XPS 分析結果を示す. As-made Fe-AMO 粒子では金属 Fe と Fe 酸化物ピーク, Si₂O₃に近い Si 酸化物ピークが観測される. リン酸処理によって金属 Fe ピークが消失し, Si 酸化物は SiO₂になる. その後の塩酸溶液処理によって Fe 酸化物由来のピークが消失すると共に SiO₂ ピークが大きくなっていることが分かる. 以上より,酸溶液処理表面修飾により Fe-AMO 粒子表層は SiO₂で 覆われており,高抵抗被膜が形成されていることが示唆され,磁心材料とした場合に渦電流を抑制でき,鉄損が低減できると考えられる.

<u>参考文献</u>

- 1) R. Hirayama, et al., Papars of Tech. Mtg. Magn. IEEJ, MAG-16-240 (2016).
- 2) K. Sugimura, et al., INTERMAG2017, BU-05 (2017).
- 3) R. Alfonsett, et al., Appl. Surf. Sci., 70-71, 222 (1993).

Fig. 1 Cross-sectional SEM image of surface-modified Fe-AMO particle by acid solution process.

Fig. 2 XPS analysis results of surfacemodified Fe-AMO particle by acid solution process.

裏面照射型 CMOS カメラによる広視野磁区観察装置の高性能化

○目黒 栄,*斉藤 伸 (ネオアーク,*東北大学)

Improvement of Wide Area Longitudinal Kerr Imaging System by Backside-illuminated CMOS Camera S. Meguro, *S. Saito (Neoark Corp., *Tohoku Univ.)

はじめに 資源エネルギー問題,地球温暖化問題の解決手段として省エネルギー機器の開発が求められている.モーターや変圧器によるエネルギーロスは稼動数の多さから莫大な量であり,これらの高効率化は環境負荷低減に対して急務である.この課題に対しこれらデバイスに実用されるアモルファス箔帯や珪素鋼板の特性改善が重要である。我々はこれらの磁性材料の磁化過程解析に有用な磁化方向検出機能を有する広視野磁区観察装置を開発してきた¹⁻²⁾.この装置では縮小光学系とイメージインテンシファイア(I.I.)を用いることによりセンチメートルオーダーの視野と時間分解観察を可能とした.しかしながらI.I.は高価であり,空間分解能および S/N が I.I.の性能に左右されることが難点であった.最近,高感度・大受光面の裏面照射型(BSI) CMOS センサーを採用した工業用カメラが普及してきた.そこで BSI-CMOS カメラを用いることにより広視野磁区観察装置の広視野化、高分解能化および高 S/N 化を行ったので報告する.

<u>光学設計</u> Fig. 1 に (a) 従来の I. I.を用いた光学系と (b) 開発した BSI-CMOS カメラによる光学系を示す. (a) の従来の光学系では CCD カメラの撮像面が 1/3 インチと小さいため,対物レンズおよび結像レンズ L2 に よって 2/3 倍に縮小された像を I. I.の受光面に結像させ,出力像をリレーレンズ L3 によりさらに 2/3 倍に縮 小し撮像している.一方 (b) の今回開発した光学系では受光面 1/1.2 インチの BSI-CMOS カメラを採用するこ とにより対物レンズおよび結像レンズ L2 によって形成された像を I. I.を用いることなく直接撮像している.

観察例 Fig. 2 に観察用試料として表面状態の影響を排除するため 2.5 インチガラスディスクに成膜した微結晶 FeTaN 薄膜を用いた磁区観察結果を示す. Fig. 2 (a) は従来の光学系 (Fig. 1 (a)), Fig. 2 (b) は今回開発した光学系 (Fig. 1 (b)) により撮像した磁区像である. いずれも同一の磁区を観察しており,それぞれ,100 枚の画像積算によりノイズ低減を図り,飽和磁界印加像との差分処理によって磁区以外の情報の除去を行っている. 従来装置の視野が 14×10.5 mm であるのに対し,開発装置の視野は 16.5×10.3 mm であり面積比で 17% 広視野化されている. また,空間分解能は約 2 倍, S/N は約 4 倍向上していることが確かめられた.

講演では時間分解観察に対する取り組みについても報告する予定である.

<u>参考文献</u>

- 1) S. Meguro, S. Saito, K. Akahane M. Takahashi et al., Ann. Conf. Magn. Soc. Jpn., 14pF-3 (2009), 7aF-10 (2010).
- 2) S. Meguro, K. Akahane, S. Saito, AIP Advances, 6, No. 5, 056504-1 056504-5 (2016).

Fig. 1 Schematics of the wide area longitudinal Kerr imaging system of (a) CCD camera with I. I. system and (b) BSI-CMOS camera system, respectively

Fig. 2 Domain images for the FeTaN thin film without field obtained by (a) CCD-camera with I. I. system and (b) BSI-CMOS camera system, respectively.

Fe²⁺-Ti⁴⁺, 及び Al³⁺置換した BaFe₁₂O₁₉の作製及び磁気特性

米沢豊志、柿崎浩一、神島謙二 (埼玉大学)

Synthesis and magnetic properties of Fe²⁺-Ti⁴⁺ and Al³⁺ substituted BaFe₁₂O₁₉

A. Yonezawa, K. Kakizaki, K. Kamishima

(Saitama Univ.)

<u>1. 緒言</u>

M型 Ba フェライト(BaFe₁₂O₁₉)は、永久磁石材料として用 いられている。この結晶構造は R ブロック((BaFe₆O₁₁)²)と S ブロック((2Fe₃O₄)²⁺)の積層構造で記述でき、その構造は非 常に安定で 2 つの Fe³⁺を 2 価、4 価の遷移金属イオンによっ て置換できる¹⁾。本研究では Fe²⁺-Ti⁴⁺ および Al³⁺で Fe³⁺を 置換した M型 Ba フェライトを作製し、その磁気特性を調 査した。

2. 実験方法

原料粉(BaCO₃, TiO₂, α-Fe₂O₃, Al₂O₃)をRブロック組成 (BaTi₂Fe_{4-x}Al_xO₁₁)となるように秤量した。それらを湿式混合 し、1200 °Cで焼成した。焼成した試料を遊星ボールミルを 用いて微粉砕した。このRブロック原料とSブロック原料の マグネタイトを秤量し、24時間湿式混合した。混合粉末を 加圧成形して石英管に封入し(0.5 Pa)、1300 °Cで本焼成を行 った。結晶構造を粉末X線回折法で同定し、磁気特性は振動 試料型磁力計(VSM)と超伝導量子干渉型(SQUID)磁束計を用 いて測定した。

3. 結果および考察

1300℃で本焼成した試料の X 線回折図を図1に示す。x が 0~4 の範囲で M 型結晶構造単相の試料が得られた。

室温で測定した磁化曲線を図2に示す。x=0,1,2の試料 の磁化は飽和していない。非磁性イオンであるTi⁴⁺が化学式 あたり 0.7 個以上入るとコリニアーな磁気構造が崩れ始める ¹⁾。今回作製したx=0の試料においては化学式あたり2個 のTi⁴⁺が入っているため、コリニアー性が低下し、高磁場磁 化率が増大したものと考えられる。一方、x=3,4の試料で は高磁場磁化率は減少した。これはAl置換によって飽和磁 気モーメントが減少するとともに、Tiイオンの分布が変化 し、コリニアー性が変化したと考えられる。

図3に化学式あたりの磁気モーメントの値を示す。upス ピンサイトに非磁性イオンが入ると、磁気モーメントは低 下する。今回作製した試料において、Al³⁺の置換量が増加す るにつれて磁気モーメントは低下している。これはAl³⁺が upスピンサイトに指向して入るものと考えられる。

<u>4.参考文献</u>

1) X. Batlle et al., J. Appl. Phys., Vol. 70 (1991) 1614

結晶方位の異なる MgO 基板上に形成した エピタキシャル Fe₇₀Co₃₀ 合金薄膜の磁歪挙動

芹澤伽那¹・川井哲郎¹・大竹充^{1,2}・二本正昭¹・桐野文良³・稲葉信幸⁴ (¹中央大,²工学院大,³東京藝大,⁴山形大)

Magnetostriction Behaviors of Epitaxial Fe₇₀Co₃₀ Alloy Thin Films Formed on MgO Substrates with Different Orientations Kana Serizawa¹, Tetsuroh Kawai¹, Mitsuru Ohtake^{1,2}, Masaaki Futamoto¹, Fumiyoshi Kirino³, and Nobuyuki Inaba⁴ (¹Chuo Univ., ²Kogakuin Univ., ³Tokyo Univ. Arts, ⁴Yamagata Univ.)

はじめに Fe-Co 合金は代表的な軟磁性材料であり、磁気ヘッドやセンサなどの磁気応用デバイスで活用されている.デバイスの可能性検討では基本物性を正確に把握することが重要であり、基板結晶に対して方位制御が可能なエピタキシャル膜を用いて調べることが有効である.磁歪は基本磁気物性のひとつであり、デバイス性能に影響を及ぼす.これまで、多結晶 Fe-Co 膜の磁歪特性は報告されているが、エピタキシャル膜の磁歪は殆ど知られていない.本研究では、結晶方位の異なる MgO 基板上に Fe₇₀Co₃₀ (at.%) 合金膜をエピタキシャル成長させ、回転磁界中における磁歪挙動の解析を行った.

実験方法 膜形成には超高真空 RF マグネトロンスパッタリング装置を使用した. MgO(001), (110)単結晶基板, および, 50 nm 厚の MgO(111)層をヘテロエピタキシャル成長させた Al₂O₃(0001)単結晶基板を用い,これらの基 板上に基板温度 300 ℃ で 100 nm 厚の Fe₇₀Co₃₀膜を形成した.構造評価には RHEED および XRD,磁化曲線測 定には VSM,磁歪測定には片持ち梁法を用いた.

実験結果 Fig. 1(a-1)~(c-1)に MgO(001), MgO(110), MgO(111)/Al₂O₃(0001)基板上に形成した Fe₇₀Co₃₀ 膜の RHEED パターンを示す. それぞれ, Fig. 1(a-2)~(c-2)に示すような bcc(100), bcc(211), bcc(110)表面に対応する 回折パターンが現れており, エピタキシャル成長していることが分かる. RHEED 解析から決定した結晶方位関 係は Fe₇₀Co₃₀(100)[011] || MgO(100)[001], Fe₇₀Co₃₀(211)[111], [111] || MgO(110)[110], Fe₇₀Co₃₀(110)[001]_{NW}, [111]_{KS} || MgO(111)[110]である. MgO(100)基板上では(100)単結晶膜, MgO(110)基板上では面垂方向に互いに 180°回転 した方位関係を持つ(211)双結晶膜, MgO(111)基板上では Nishiyama-Wasserman (NW) と Kurjumov-Sachs (KS) と同様な方位関係を持つ 9 つのバリアントから構成される(110)複合エピタキシャル膜が形成されていることが 分かった. 磁化曲線測定を行ったところ, (100)単結晶および(211)双結晶膜に対してはそれぞれ 4 および 2 回対 称の面内磁気異方性が現れたのに対し, (110)複合エピタキシャル膜に対してはほぼ等方的な磁化曲線が観察された. Fig. 2 に回転磁界中で測定した磁歪の出力波形を示す. bcc(001)および(211)膜の場合, 低磁界では, 磁気 異方性により印加磁界方位と磁化方向に角度差が生じ¹⁾, 波形が歪む傾向が認められ, 磁界の増加に伴い, 磁 化が磁界方向に追従し,正弦波が観察されている. 一方, bcc(110)膜に対しては、低磁界から高磁界まで正弦波 が観察されている. 当日は磁歪波形と磁気異方性の関係について詳細に議論する.

1) T. Kawai, T. Aida, M. Ohtake, and M. Futamoto: J. Magn. Soc. Jpn., 39, 181 (2015).

Fig. 1 (a-1)–(c-1) RHEED patterns observed for $Fe_{70}Co_{30}$ films formed on MgO substrates of (a-1) (100), (b-1) (110), and (111) orientations. (a-2)–(b-2) Schematic diagrams of RHEED patterns simulated for (a-2) bcc(100), (b-2) bcc(211), and (c-2) bcc(111) surfaces.

Fig. 2 Output waveforms of magnetostriction measured for $Fe_{70}Co_{30}$ epitaxial films of (a) (001), (b) (211), and (c) (110) orientations measured under different rotating magnetic fields.