強磁性金属のカイラル構造での非相反電気伝導の測定

村上 郁, 児玉 俊之, 冨田 知志, 細糸 信好, 柳 久雄 (奈良先端大物質)

Measurement of non-reciprocal electrical conductivity in chiral structures of ferromagnetic metal Kaoru Murakami, Toshiyuki Kodama, Satoshi Tomita, Nobuyoshi Hosoito, Hisao Yanagi (Graduate School of Materials Science, Nara Institute of Science and Technology)

はじめに

電流の一方向素子であるダイオードは整流効果をもたらし、エレクトロニクスには欠かすことができない。 現在、ダイオードと言えば半導体の pn 接合を用いた半導体ダイオードを意味する。一方、本研究では半導体 を用いずに一方向素子を実現するために「磁気カイラル異方性」を利用する。この性質は磁性体でカイラル (螺旋)構造を作製することで現れる。電気伝導に対する磁気カイラル異方性は、外部から磁場をかけた状 態では報告されているが¹⁾、これでは応用が難しい。そこで本研究では無磁場下での磁気カイラル異方性に よる非相反電気伝導の観測を目指している。

試料作製方法

シリコン基板に SU8 レジストをフォトリソグラフィで V 字型にパターニングした。この試料にコバルト (Co)をスパッタリング成膜した後、電磁石を用いて面内方向に 1 kOe の磁場を印加した。その試料を N-メチル-2-ピロリドンに浸けることにより、パターニングした V 字部分の先端が基板から剥離した。その時 Co 膜中の応力により V 字構造が巻き上がった。Fig.2 (a)に示すように V 字頂点の右側には右巻き、左側には 左巻きの Co 薄膜のカイラル構造が同時に作製できる。

測定結果と考察

ナノプローブ装置(日立 NE4000)中で4端子法電気伝導測定を行った結果を Fig.2 に示す。Fig.2 (a)は電気 伝導測定時の走査型電子顕微鏡 (SEM)像である。Fig.2 (b)の〇はプローブ1から4に電流を流し、プローブ 2と3の電位差を測定した結果である。Fig.2 (b)の×はプローブ4から1に電流を流し、プローブ3と2の電 位差を測定した結果である。約275Ωとコバルト薄膜の細線として妥当な電気抵抗が測定できており、接触 抵抗は無視できることがわかる。磁気カイラル異方性が発現すれば、電流の向きに応じて抵抗が変化するは ずである。しかしながら、電流の向きを逆転させても抵抗の値はほぼ同じであった。これは Coの保磁力が小 さいために、巻き上げ後に磁化を保っていないことが原因と推察される。今後は、より保磁力の大きな磁性 金属を用いてカイラル構造を作製し、測定する予定である。

参考文献

1) G. Rikken et al., *Phys.Rev.Lett.* 87, 236602 (2001).