イオン照射した MnGa 膜の磁気特性の温度依存性

大島大輝,加藤剛志,岩田聡 (名大) Temperature dependence of magnetic properties of ion-irradiated MnGa films D. Oshima, T. Kato, S. Iwata (Nagoya Univ.)

はじめに

我々はこれまでに MnGa 膜を用いたイオン照射型のビットパターン媒体の作製に取り組んできた¹⁾. これ は、少量の Kr イオンを L1₀-MnGa 膜へ照射することで、不規則相である A1-MnGa 膜へと遷移させ、非磁性 化することを利用して作製したものである. しかしながら、イオン照射による MnGa の磁性遷移過程につい ては十分理解されていない. そこで本研究では、イオン照射された MnGa 膜の磁気特性の温度依存性を測定 することにより、強磁性 MnGa 相の活性化体積などを推定したので報告する.

実験方法

RF マグネトロンスパッタ法により単結晶 MgO (001)基板上に Cr (2 nm) / MnGa (15 nm) / Cr (20 nm) / MgO(001)の膜構成で成膜した. Cr 層は基板温度 400 °C で成膜し, 600 °C で 60 min のポストアニールを行った. MnGa 層は基板温度 300 °C で成膜し, 400 °C で 60 min のポストアニールを行った. イオン注入装置を用い, 作製した MnGa 膜に 30 keV の Kr イオンを 5×10¹² ~ 2×10¹⁴ ions/cm² の範囲で照射した. 磁気特性の温度 依存性は物理特性測定装置 (PPMS) を用いて調べた.

実験結果

イオン照射前の MnGa 膜の飽和磁化 M_s は室温で 650 emu/cc であった. Fig. 1 にイオン照射前および照射後 の MnGa 膜の保磁力 H_c の温度依存性を示す. イオン照射前の MnGa の H_c は 300 K で 1.5 kOe であったが, 50 K では 1.9 kOe と若干大きくなった. 一方,照射量が 2×10¹³ ions/cm²の MnGa 膜では, 300 K の H_c が 2.7 kOe であるのに対し, 50 K では 12 kOe と 4.4 倍に増加した. 2×10¹³ ions/cm² 照射後の MnGa 膜の 300 K と 50 K における M_s はそれぞれ, 170 emu/cc, 210 emu/cc であった. また, トルク曲線から見積もった 300 K と 50 K における垂直磁気異方性定数 K_u はそれぞれ, 3.2, 6.5 Merg/cc となった. 300 K と 50 K の M_s および K_u を比 較すると,一軸異方性の材料における $K_u \propto M_s^3$ の関係²⁾を示している.一方, 2 K_u/M_s から算出した異方性 磁界 H_k は 300 K, 50 K でそれぞれ 38 kOe, 62 kOe となる. つまり, Fig. 1 で示した 2×10¹³ ions/cm²照射後の MnGa 膜の低温での保磁力増加は H_k の増加だけでは説明できないことが分かった. 次に,イオン照射された

MnGa 膜中では、非磁性化された A1-MnGa マトリクス中に強磁性の L1₀-MnGa が分散したような構造をとっていると考え、Sharrock の式³⁾を用 いて H_c の温度依存性のフィッティングを行い、活性化体積を見積もった. Fig. 1 の実線は、Sharrock の式において試行周波数 $f_0 = 10^9$ Hz、観測時間 t =100 sec、指数 n = 0.5、 $K_u \sim 10^7$ erg/cc、活性化体積 V = 200 nm³ とした結果で ある. イオン照射された MnGa 膜は膜厚方向に均一な構造を有すると仮定す ると,活性化体積 V = 200 nm³は、(3.7 nm)² × 15 nm に相当する. 照射量 2 × 10¹³ ions/cm² は(2.2 nm)² の面積にイオンが 1 つ照射されると計算されるが、これ と活性化体積から見積もられる面積が同程度となることが分かった.

<u>参考文献</u>

- 1) D. Oshima et. al., IEEE Trans. Magn., 49, 3608 (2013).
- 2) H. B. Callen et. al., J. Phys. Chem. Solids, 27, 1271 (1966).
- 3) M. P. Sharrock, J. Appl. Phys., 76, 6413 (1994).

Fig. 1 Temperature dependence of coercivity H_c of MnGa films before and after the ion doses of 1 × 10¹³ and 2 × 10¹³ ions/cm². The solid line represents the fitted curve by Sharrock's equation³⁾.