Micro-domain control toward new lasers

Takunori Taira
(Institute for Molecular Science)

The solid-state lasers and nonlinear optics have contributed to broadening the new horizon in quantum electronics, owing to their high-brightness nature of giant pulses under Q-switching and mode locking\(^1\). Moreover, their cutting edges are expected from the field of high-energy physics (i.e., laser fusion/laser ignition, laser accelerator, and vacuum decay) to precise measurement, laser-based material processing, and laser ignitions (i.e., engine ignition and fusion ignition). On the other hand, its development has long been a materials-limited. In this talk, we’d like to review the recent progress of Micro Solid-State Photonics with regard to high performance microchip lasers based on the micro-domain structure and boundary-controlled materials\(^2,3\). The past decade has witnessed a veritable revolution in the types and performance levels of solid-state lasers, largely due to development of micro-domain engineered new optical materials, such as the transparent laser ceramics. Especially, the naturally bonded composite Nd:YAG/Cr:YAG ceramics contributes sub-ns giant pulse generation. These progress of YAG ceramics enabled multi-megawatt microchip lasers, sub-PW/sr-cm\(^2\) brightness and sub-ZK brightness temperature. “The world first laser ignited car” has been demonstrated by it\(^4\) (Fig. 1). And furthermore, we’d like to discuss the next generation of high-brightness lasers based on the aligned anisotropic ceramics by RE\(^3\)+-ion, such as Yb:FAP ceramics. The fabrication of laser-grade anisotropic ceramics by a conventional sintering process is not possible owing to optical scattering at randomly oriented grain boundaries. We have demonstrated the first realization of transparent anisotropic ceramics by using a new crystal orientation process based on large magnetic anisotropy induced by $4f$ electrons (Fig. 2). By slip casting in a 1.4 T magnetic field and subsequent heat treatments, we could successfully fabricate laser-grade calcium fluorapatite ceramics, and its laser oscillation to complete the laser ceramics map as shown in Fig. 3\(^3,5,6\). These compact lasers can provide the extreme giant-power by using micro solid-state photonics, so to speak “Giant Micro-photonics”\(^4,5\).

Reference
4) T. Taira, et al., The 1st Laser Ignition Conference (LIC’13), Yokohama, Japan, April 23-25, LIC3-1 (2013).