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1. Introduction 

From an industrial viewpoint, magnetic anisotropy is the most important property of 

ferromagnetic materials.  It governs the efficiency of magnetic media in hard disk drive (HDD) 

devices, permanent magnets in motors and so on.  Permanent magnets have strong magnetic 

anisotropy above room temperature, especially in motors of hybrid and electric vehicles.  They are 

consequently highly desired in terms of addressing energy problem.   

     In this symposium, we will first overview the general theory for the magnetic anisotropy at 

finite temperature and show how the magnetic anisotropy constants (MAC) vary as temperature 

increases.1)  Next, we will discuss on the effects of thermal fluctuation (activation) of 

magnetization on the reversal (coercive) field, on the basis of magnetic viscosity.  Finally, let us 

show some calculated results for the temperature dependence of MAC of Nd2Fe14B and mainly 

discuss the site dependence of the MAC’s at around the room temperature. 2,3) 

 

2. Theoretical evaluation of the magnetic anisotropy constants at finite temperature 

     Suppose that the classical Hamiltonian of a magnetic system having the uniaxial anisotropy is 

given by  
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where the first two terms indicate the magnetic anisotropy energy and the last term the exchange 

energy.  Here the constants 1  and 2  can be expressed through the expansion coefficients of 

the crystal field energy in terms of the Legendre polynomials )(coslP , from which we have 
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nB  being the crystal field parameter.  The methods to 

evaluate the temperature dependence of the MAC’s are listed as follows: 

1) to solve the stochastic LLG (Langevin) equation involving the thermally fluctuated field, and 

derive the MAC’s by the magnetization curves for the applied fields parallel and perpendicular to 

the easy axis. 

2) to calculate the free energy ),( TF   by performing the Monte-Carlo method with the average 

magnetization direction of  , and derive the n-th MAC’s )(TKn  
by fitting ),( TF 
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3) to express directly the form of MAC’s by means of the first order perturbation theory in terms of 

the anisotropy terms, which gives  
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Note that 11 )0( K
 
and 22 )0( K , since 1lc  when T = 0. 

  
Although the method 1) requires much computational time and resource, it is most realistic to 

reproduce the magnetization curves.  To perform the method 2), it is useful to adopt a new 

technique proposed recently by Asselin et al.4)  Employing this method, we have successfully 
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reproduced the temperature dependence of MCA’s of Nd2Fe14B.3)  The method 3) provides us 

physically transparent form of the MAC’s and is the most convenient way to realize the MAC’s if 

one further adopts the mean field approximation for the exchange term.  One can understand from 

eqs. (2) and (3) that )(1 TK  )0( T
 
is determined by 1  and 2 , and further by exH through 

exHlP  )(cos .  Additionally, according to the Callen-Callen theory,5) one should note the relation 
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exH  .  Recently, we have 

confirmed by using the methods 2) and 3) that the approximate relation 
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holds in the wide range of temperature as far as exHTk B  is satisfied.  Thus, the MAC’s can be 

expressed by using )0(/)( MTMm
exH  as 
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exHmTK   .  In Fig. 1, we show the calculated results of the temperature dependence of 

MAC’s of Nd2Fe14B based on the above expressions.  Here, we input the experimental data of 

)0(/)( MTMm
exH  and took into accounted for i

6sin  term in addition to 1  and 2  terms. 

One can recognize that the above expressions can work well for the complex compounds like 

Nd2Fe14B. 

In addition, we should emphasis here that )(TKn  )0( T
 
is dominated by exH  as well as 

1  and 2 , as mentioned above.  This implies that the )(TKn  at surfaces or interfaces exhibit 

larger decrement with temperature than those inside the bulk.  Figure 2 shows the temperature 

dependence of )(1 TK  both for exH = 350 and 175 in units of kelvin.1)  One can see that the 

)(1 TK  values for exH = 175 [K] is much smaller than those for exH = 350 [K] as bulk values, when 

the temperature is above 200 [K], which leads us to consider that the magnetization reversal takes 

place by a smaller field at the surfaces or interfaces of grains in magnets. 

     In the symposium, we will discuss the site dependence of the MAE and the effects of thermal 

activation on the reversal field in Nd-Fe-Bd. 
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Fig. 2 Temperature dependence of K1 for the 
exchange energy Hex=350 and 175 [in units 
of K] in Nd2Fe14B. 

-20

-10

0

10

20

30

40

0 50 100 150 200 250 300

Temperature [K]

M
ag
ne
t o
c
r y
st
al
li n
e
an
is
o
tr
o
p
y
c
o
ns
t a
n
ts

[ M
J
/
m
3
]

Nd2Fe14B

K2-K3

K1

 

Fig.1 Temperature dependence of K1 

and K2 –K3 of Nd2Fe14B.  The dots are 

the experimental dada.6) 
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