ヤーン・テラー効果による(Cu,Co)Fe₂O₄ 微粒子の正方晶化と磁 気特性

Hawa Latiff、岸本幹雄、Sonia Sharmin、喜多英治、柳原英人 筑波大学数理物質科学研究科

Tetragonal distortion and magnetic properties of (Cu,Co)Fe₂O₄ particles via Jahn-Teller effect

H. Latiff, M. Kishimoto, S. Sharmin, E. Kita and H. Yanagihara

Institute of Applied Physics, University of Tsukuba

Introduction

Cobalt ferrite (CFO) can exhibit large magnetic anisotropy, K_u under certain symmetry reduction conditions. Extraordinarily large K_u of almost 10 Merg/cm³ obtained by introducing a tetragonal distortion (c/a<1) in the structure has been reported in epitaxially strained CFO thin films [1]. Since epitaxial strain is limited to thin films, development of the material in the form of nanoparticles is necessary for bulk production. The introduction of lattice distortion via Jahn-Teller (JT) effect by substituting Cu²⁺ ion in the B-sites of spinel Fe₃O₄ particles has been proposed [2]. However, due to the oxidation of Fe²⁺ to Fe³⁺ at high temperature, no JT distortion could be confirmed. To explore the JT distortion, the B-site ion of the spinel ferrite has to be highly stable in the divalent state, such as for

Co²⁺. In this study, we report the fabrication of cobalt substituted copper ferrite and the effect of tetragonal distortion on its magnetic properties.

Experimental procedures

(Co,Cu)Fe₂O₄ particles were prepared by coprecipiation and flux methods. The aqueous solutions containing Co²⁺, Cu²⁺, and Fe³⁺ were mixed with NaOH aqueous solution, and heated at 95°C for 3 h to form a precipitate. This was then mixed with KBr flux, and heated at 850°C for 3 hours. The obtained particles were next rinsed with water to remove the KBr flux. Finally, the particles were subjected to heat treatment at 900°C for 2 h, followed by furnace cooling. Characterizations were performed using x-ray diffraction (XRD) and a vibrating sample magnetometer (VSM) at room temperature.

Results

Figure 1 (a) shows the XRD patterns for $(Cu,Co)Fe_2O_4$ particles after flux treatment. The structure is that of a cubic spinel structure with faint traces of CuO. After heat treatment at 900°C for 2 h, tetragonal spinel phase could be confirmed (Fig.1 (b)). The single phase showed that both Co and Cu were completely substituted into the spinel structure. Fig. 2 shows the magnetization curves of the particles. It can clearly be seen that the cubictetragonal transformation results in a high increase of coercivity. The saturation magnetization values show good agreement with that of an inverse spinel. For the tetragonal (Cu,Co)Fe₂O₄ particles, the saturation magnetization was 26 emu/g, whereas the coercivity was about 2000 Oe.

References

- [1] T. Niizeki et al., Appl. Phys. Lett., 103, 162407 (2013).
- [2] H. Latiff *et al.*, *IEEE Trans. Magn*, submitted on May 6, 2016.

Fig.1. XRD patterns of (a) as-fluxed and (b) heat-treated $(Cu,Co)Fe_2O_4$ particles

Fig.2. Magnetization curves of the asfluxed, and heat-treated (Cu,Co)Fe₂O₄ particles.