エピタキシャル Ni_xFe_{4-x}N(x = 0, 1, 3, 4)薄膜の磁気物性の評価

伊藤啓太^{1,2,3}, 鹿原和樹², 高田郁弥¹, 東小薗創真¹, 具志俊希¹, 都甲薫¹, 角田匡清², 末益崇¹ (¹筑波大数理物質, ²東北大工, ³日本学術振興会 PD)

Magnetic properties of epitaxially grown $Ni_xFe_{4-x}N(x = 0, 1, 3, and 4)$ films

K. Ito^{1,2,3}, K. Kabara², F. Takata¹, S. Higashikozono¹, T. Gushi¹, K. Toko¹, M. Tsunoda², and T. Suemasu¹

(¹Inst. of Appl. Phys., Univ. of Tsukuba, ²Dept. of Electronic Eng., Tohoku Univ., ³JSPS-PD)

はじめに

逆ペロブスカイト型遷移金属強磁性窒化物は、高い負のスピン分極率(Fe₄N)や垂直磁気異方性(Mn₄N)により、スピントロニクス応用材料として注目されている¹⁾。類型材料のNi_xFe_{4-x}Nは、粉末試料ではNi添加量に伴って飽和磁化(*M*₈)ならびにキュリー温度(*T*_C)が低下し、*x* ≥ 3では*T*_Cが室温を下回ると報告されている²⁾。 一方で、反応性スパッタ法で作製されたNi₃FeNでは、室温で6%の大きな正の異方性磁気抵抗(AMR)効果が報告されており³⁾、その物性が十分に明確化されていない。本研究では、分子線エピタキシー(MBE)法によりNi_xFe_{4-x}N薄膜をエピタキシャル成長し、磁化曲線とAMR効果を評価することで、上記磁気物性を検証した。 **実験方法**

固体 Fe, Ni と高周波プラズマ N₂の同時供給による MBE 法により、SrTiO₃(001)基板上に Ni_xFe_{4-x}N(x = 0, 1, 3, 4)薄膜(50 nm)をエピタキシャル成長し、磁化曲線を測定した。得られた $M_{\rm S}$ を第一原理計算から求めた値と比較した。NiFe₃N および Ni₃FeN 薄膜については、[100]が長手方向の幅 0.2 mm のホールバー形状に加工し、測定温度(T)5~300 K の範囲で、外部磁場 30 kOe、直流電流 0.2 mA のもとで AMR 効果を測定した。

実験結果

Fig. 1 に、第一原理計算、室温および 2 K における磁化曲線から 求めた Ni_xFe_{4-x}N(x = 0, 1, 3, 4)薄膜の M_S を示す。第一原理計算では Ni_xFe_{4-x}N は強磁性を示し、Ni 比が増えるに従い M_S は単調に減少 し、実験でも同様の傾向が得られた。しかし、室温において Ni₃FeN の磁化は消失し、Ni₄N に関しては 2 K でも常磁性を示した。M-T測定から Ni₃FeN の T_C は 266 K と見積もられ、Ref. 2 の結果を支持 するものとなった。Fig. 2 に NiFe₃N および Ni₃FeN の AMR 比の T依存性を示す。Ni₃FeN の室温における AMR 比はほぼ 0 であり、 Ref. 3 の結果とは異なった。また、双方の試料で低温領域にて負 の AMR 効果が観測された。Kokado らの理論によれば、負の AMR 効果は $s_1 \rightarrow d_1$ または $s_1 \rightarrow d_1$ の s-d 散乱で説明される⁴。第一原理計 算の結果、NiFe₃N および Ni₃FeN のフェルミ準位における状態密 度は 3d 少数スピンが支配的であるため、これらの負の AMR 効果 は $s_1 \rightarrow d_1$ の散乱機構に起因する。したがって、NiFe₃N と Ni₃FeN に

ついても、Fe₄N と同様に少数スピン伝導が優勢といえる。 Fig. 2 *T* versus AMR ratio of Ni_xFe_{4-x}N (*x* = 1 and 3). **謝辞** 本研究は JSPS 科研費(Nos. 26249037 and 14J01804)、東北大通研プロ(H26/A04)の支援を受けた。磁化測定は、筑波 大学 喜多・柳原・Sharmin 研究室および研究基盤総合センター低温部門のご協力で行った。

参考文献 1) 角田ら, まぐね 11, 125 (2016). 2) X. G. Diao *et al.*, J. Appl. Phys. 85, 4485 (1999). 3) R. Loloee, J. Appl. Phys. 112, 023902 (2012). 4) S. Kokado and M. Tsunoda, J. Phys. Soc. Jpn. 84, 094710 (2015).