エピタキシャル $Ni_xFe_{4-x}N(x=0,1,3,4)$ 薄膜の磁気物性の評価

伊藤啓太 ^{1,2,3}, 鹿原和樹 ², 高田郁弥 ¹, 東小薗創真 ¹, 具志俊希 ¹, 都甲薫 ¹, 角田匡清 ², 末益崇 ¹ (¹ 筑波大数理物質, ² 東北大工, ³ 日本学術振興会 PD)

Magnetic properties of epitaxially grown $Ni_xFe_{4-x}N(x = 0, 1, 3, and 4)$ films K. Ito^{1,2,3}, K. Kabara², F. Takata¹, S. Higashikozono¹, T. Gushi¹, K. Toko¹, M. Tsunoda², and T. Suemasu¹ (¹Inst. of Appl. Phys., Univ. of Tsukuba, ²Dept. of Electronic Eng., Tohoku Univ., ³JSPS-PD)

はじめに

逆ペロブスカイト型遷移金属強磁性窒化物は、高い負のスピン分極率(Fe_4N)や垂直磁気異方性(Mn_4N)により、スピントロニクス応用材料として注目されている 1)。類型材料の $Ni_xFe_{4-x}N$ は、粉末試料では Ni 添加量に伴って飽和磁化(M_8)ならびにキュリー温度(T_C)が低下し、 $x \ge 3$ では T_C が室温を下回ると報告されている 2 0。一方で、反応性スパッタ法で作製された Ni_3FeN では、室温で 6%の大きな正の異方性磁気抵抗(AMR)効果が報告されており 3 0、その物性が十分に明確化されていない。本研究では、分子線エピタキシー(MBE)法により $Ni_xFe_{4-x}N$ 薄膜をエピタキシャル成長し、磁化曲線と AMR 効果を評価することで、上記磁気物性を検証した。

実験方法

固体 Fe, Ni と高周波プラズマ N_2 の同時供給による MBE 法により、 $SrTiO_3(001)$ 基板上に $Ni_xFe_{4-x}N(x=0,1,3,4)$ 薄膜(50 nm)をエピタキシャル成長し、磁化曲線を測定した。得られた M_S を第一原理計算から求めた値と比較した。 $NiFe_3N$ および Ni_3FeN 薄膜については、[100] が長手方向の幅 0.2 mm のホールバー形状に加工し、測定温度(T)5~300 K の範囲で、外部磁場 30 kOe、直流電流 0.2 mA のもとで AMR 効果を測定した。

実験結果

Fig. 1 に、第一原理計算、室温および 2 K における磁化曲線から求めた $Ni_xFe_{4-x}N(x=0,1,3,4)$ 薄膜の M_s を示す。第一原理計算では $Ni_xFe_{4-x}N$ は強磁性を示し、Ni 比が増えるに従い M_s は単調に減少し、実験でも同様の傾向が得られた。しかし、室温において Ni_3FeN の磁化は消失し、 Ni_4N に関しては 2 K でも常磁性を示した。M-T 測定から Ni_3FeN の T_C は 266 K と見積もられ、Ref. 2 の結果を支持するものとなった。 Fig. 2 に $NiFe_3N$ および Ni_3FeN の AMR 比の T 依存性を示す。 Ni_3FeN の室温における AMR 比はほぼ 0 であり、 Ref. 3 の結果とは異なった。また、双方の試料で低温領域にて負の AMR 効果が観測された。 Rotation Rotation

Fig. 1 M_S of Ni_xFe_{4-x}N(x = 0, 1, 3, and 4).

ついても、 Fe_4N と同様に少数スピン伝導が優勢といえる。 Fig. 2 T versus AMR ratio of $Ni_xFe_{4x}N$ (x=1 and 3). **謝辞** 本研究は JSPS 科研費(Nos. 26249037 and 14J01804)、東北大通研プロ(H26/A04)の支援を受けた。磁化測定は、筑波大学 喜多・柳原・Sharmin 研究室および研究基盤総合センター低温部門のご協力で行った。

<u>参考文献</u> 1) 角田ら, まぐね **11**, 125 (2016). 2) X. G. Diao *et al.*, J. Appl. Phys. **85**, 4485 (1999). 3) R. Loloee, J. Appl. Phys. **112**, 023902 (2012). 4) S. Kokado and M. Tsunoda, J. Phys. Soc. Jpn. **84**, 094710 (2015).