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Thermal activation analysis on Nd-Fe-B hot-deformed magnets with Pr-Cu

grain boundary diffusion process
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Since the discovery of Nd,Fe 4B magnets[1, 2], numerous and extensive efforts to increase the coercive field
H. have been made. Nevertheless, the value of H, remains as small as 1/3 of the anisotropy field Hy. Moreover, H,
rapidly decreases with the temperature T above the ambient temperature. The low H. and its large temperature
dependence are well known as the coercivity problem of Nd-Fe-B magnets. To solve this problem, it is essential to
understand the magnetization reversal mechanism of Nd-Fe-B magnet. In this study, thermal activation analyses
based on the magnetic viscosity measurement were performed to discuss the magnetization reversal process of the
Nd-Fe-B hot-deformed magnets.

Nd-Fe-B hot-deformed magnet with the Pr-Cu eutectic alloy grain boundary diffusion (GBD) process was
used in this study[3]. Under finite temperature, the magnetization reversal takes place through the thermal
activation process against the energy barrier Ep(H). Ex(H) is usually expressed as Ey(H) = Eo(1 - H/Ho)", where H
is the magnetic field, Eq is the energy barrier height at H = 0, n is the constant depending on the magnetization
reversal mode: n = 1 for domain wall pinning and n = 1.5 ~ 2 for nucleation or coherent rotation. Since E, strongly
depends on the magnetization reversal process, it is expected that detailed information about the reversal process
in a Nd-Fe-B magnet can be obtained if E, is accurately evaluated. Recently we proposed the method to determine
these energy barrier parameters based on the magnetic viscosity measurements [4]. Fig.1 (a) shows the
hysteresis loop of Pr-Cu GBD sample measured at 100°C. Fig.1 (b), (c), (d) shows the viscosity curves of Pr-Cu
GBD sample at H,(M/M, = 0), nucleation field H, (M/M; = 0.9) and saturation field Hs (M/M; = -0.9) measured at
100°C, respectively. The values of n are about 1 at H, and Hs. These facts indicate that the domain wall pinning is
the major magnetization reversal process at H = H; and Hs. While for H = H,,, the values of n are about 1.4,
indicating that the nucleation is the dominant magnetization reversal process.
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Fig.1 (a) shows the hysteresis loop of Pr-Cu GBD
sample measured at 100°C. Fig.1 (b), (c), (d)
shows the viscosity curves of Pr-Cu GBD sample
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