Thermal activation analysis on Nd-Fe-B hot-deformed magnets with Pr-Cu

grain boundary diffusion process

L. Zhang¹, S. Okamoto^{1, 2}, T. Yomogita¹, N. Kikuchi¹, O. Kitakami¹, H. Sepehri-Amin², T. Ohkubo², K. Hono², T. Akiya³, K. Hioki³, and A. Hattori³ (¹Tohoku Univ., ²ESICMM-NIMS, ³Daido Steel Co. Ltd.)

Since the discovery of Nd₂Fe₁₄B magnets[1, 2], numerous and extensive efforts to increase the coercive field H_c have been made. Nevertheless, the value of H_c remains as small as 1/3 of the anisotropy field H_k . Moreover, H_c rapidly decreases with the temperature T above the ambient temperature. The low H_c and its large temperature dependence are well known as the coercivity problem of Nd-Fe-B magnets. To solve this problem, it is essential to understand the magnetization reversal mechanism of Nd-Fe-B magnet. In this study, thermal activation analyses based on the magnetic viscosity measurement were performed to discuss the magnetization reversal process of the Nd-Fe-B hot-deformed magnets.

Nd-Fe-B hot-deformed magnet with the Pr-Cu eutectic alloy grain boundary diffusion (GBD) process was used in this study[3]. Under finite temperature, the magnetization reversal takes place through the thermal activation process against the energy barrier $E_b(H)$. $E_b(H)$ is usually expressed as $E_b(H) = E_0(1 - H/H_0)^n$, where H is the magnetic field, E_0 is the energy barrier height at H = 0, n is the constant depending on the magnetization reversal mode: n = 1 for domain wall pinning and $n = 1.5 \sim 2$ for nucleation or coherent rotation. Since E_b strongly depends on the magnetization reversal process, it is expected that detailed information about the reversal process in a Nd-Fe-B magnet can be obtained if E_b is accurately evaluated. Recently we proposed the method to determine these energy barrier parameters based on the magnetic viscosity measurements [4]. Fig.1 (a) shows the hysteresis loop of Pr-Cu GBD sample measured at 100°C. Fig.1 (b), (c), (d) shows the viscosity curves of Pr-Cu GBD sample at $H_c(M/M_s = 0)$, nucleation field H_n ($M/M_s = 0.9$) and saturation field H_s ($M/M_s = -0.9$) measured at 100°C, respectively. The values of n are about 1 at H_c and H_s . These facts indicate that the domain wall pinning is the major magnetization reversal process at $H = H_c$ and H_s . While for $H = H_n$, the values of n are about 1.4, indicating that the nucleation is the dominant magnetization reversal process.

This work was partially supported by ESICMM

Reference

- [1]M. Sagawa, et al., J. Appl. Phys. 55, 2083 (1984).
- [2]J. J. Croat et al., Appl. Phys. Lett. 44, 148 (1984).
- [3] H. Sepehri-Amin et al., Acta Mater. 81, 48 (2014).
- [4] S. Okamoto et al., J. Appl. Phys. 118, 223903 (2015).

Fig.1 (a) shows the hysteresis loop of Pr-Cu GBD sample measured at 100 °C. Fig.1 (b), (c), (d) shows the viscosity curves of Pr-Cu GBD sample at $H_c(M/M_s = 0)$, nucleation field H_n ($M/M_s = 0.9$) and saturation field H_s ($M/M_s = -0.9$) measured at 100 °C, respectively.