MgO(001)基板上に形成した Fe-Co-B 合金薄膜の 構造と磁気特性

芹澤伽那¹・落合亮真¹・中村将大¹・川井哲郎¹・大竹充^{1,2}・二本正昭¹・桐野文良³・稲葉信幸⁴ (¹中央大,²工学院大,³東京藝大,⁴山形大)

Structure and Magnetic Properties of Fe-Co-B Alloy Thin Films Deposited on MgO(001) Substrates

Kana Serizawa¹, Ryoma Ochiai¹, Masahiro Nakamura¹, Tetsuroh Kawai¹, Mitsuru Ohtake^{1,2},

Masaaki Futamoto¹, Fumiyoshi Kirino³, and Nobuyuki Inaba⁴

(¹Chuo Univ., ²Kogakuin Univ., ³Tokyo Univ. Arts, ⁴Yamagata Univ.)

はじめに Fe-Co-B 合金は代表的な軟磁性材料であ り、その薄膜は磁気ヘッドや TMR センサーで用いら れ、MRAM 電極層材料としても検討されている. 高 M_s を示す Fe と Co の組成が 7:3 付近の(Fe_{0.7}Co_{0.3})_{100-x}B_x (at. %) 膜は形成温度や B 組成に依存して bcc 結晶 と非晶質で構造が変化することが知られている¹⁾.し かしながら、これらの条件が膜構造および磁気特性 に及ぼす影響について系統的に調べた報告は殆どな い. 本研究では、MgO(001)基板上に(Fe_{0.7}Co_{0.3})_{100-x}B_x 膜を、基板温度を室温(RT)から 600 °C, B 組成を x=0から 15 at. %の範囲で変化させて形成し、構造と 磁気特性を調べた.

<u>実験方法</u> 膜形成には超高真空 RF マグネトロンス パッタリング装置を使用し,基板上に 40 nm 厚の (Fe_{0.7}Co_{0.3})_{100-x}B_x (x = 0-15 at. %) 膜を形成した.構造 評価には RHEED および XRD,表面形態観察には AFM,磁化曲線測定には VSM,磁歪測定には片持ち 梁法を用いた.

実験結果 Fig. 1 に基板温度を変えて形成した (Fe_{0.7}Co_{0.3})₉₅B₅膜の RHEED パターンを示す. RT から 600 ℃ で形成した全ての薄膜から, Fig. 1(a)に指数表 示した回折点が観察された. この結果から, 薄膜は 基板に対していずれもエピタキシャル成長している ことが分かる. 結晶方位関係は,

Fe-Co-B(001)[110] || MgO(001)[100]

であった.このとき, Fe-Co-B(001)格子は, MgO(001) 格子に対して 45°回転した方位関係で形成されてお り,格子不整合は-4%となる.Fig.2に面外および面 内 XRD パターンを示す.面外パターンでは Fe-Co-B 膜からの(002)反射,面内パターンでは(200)反射が観 察されている.これらの反射から面外格子定数 c お よび面内格子定数 a を算出し,その比 c/a を求めた. Fig.3に c/a の基板温度依存性を示す.RT で形成した 場合,基板との格子不整合によりもたらされる応力 により Fe-Co-B 格子が歪んでいるが,基板温度の上昇 に伴い,緩和される傾向が認められる.当日は B 組 成が構造と磁気特性に及ぼす影響についても報告す る.

参考文献

1) S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno: *Appl. Phys. Lett.*, **93**, 082508 (2008).

Fig. 1 RHEED patterns observed for $(Fe_{0.7}Co_{0.3})_{95}B_5$ films deposited on MgO(001) substrates at (a) RT, (b) 200 °C, (c) 400 °C, and (d) 600 °C. The incident electron beam is parallel to MgO[100].

Fig. 2 (a-1)–(c-1) Out-of-plane and (a-2)–(c-2) in-plane XRD patterns of $(Fe_{0.7}Co_{0.3})_{95}B_5$ films deposited on MgO(001) substrates at (a) RT, (b) 400 °C, and (c) 600 <u>°</u>C. The scattering vector of in-plane XRD is parallel to MgO[110].

Fig. 3 Effect of substrate temperature on the c/a ratio of $(Fe_{0.7}Co_{0.3})_{95}B_5$ film.