高次の磁気異方性を有する自由層の磁化反転特性

松本利映*, 荒井礼子***, 湯浅新治*, 今村裕志* (* 産総研, **JST さきがけ)

Magnetization switching property in a free layer having higher-order magnetic anisotropy R. Matsumoto*, H. Arai**, S. Yuasa*, and H. Imamura*

(*AIST, **JST-PRESTO)

1 はじめに

CPU の SRAM や DRAM を置き換えるための STT-MRAM を開発するためには, その熱耐性 (Δ_0) を 60 以上に保持しつつスピントランスファー・トルク磁化反転の閾値電流密度 $(J_{\rm sw})$ を 1 MA/cm² 以下に低減させることが求められる. 最近我々は, 等しい熱耐性 $\Delta_0(=60)$ で比較した場合, コーン磁化の自由層 $({\rm c-FL})$ は従来の垂直磁化の自由層より閾値電流密度は 22% 小さく磁化反転時間は 56% 短くなることなど, ${\rm c-FL}$ の優位性を理論的に明らかにしてきた $^{1,2)}$. コーン磁化とは, 低次の磁気異方性 $({\rm C-FL})$ を呼び, 反磁場エネルギーを含めたものとする) と高次の磁気異方性 $({\rm C-FL})$ の定数を $K_{\rm u2}$ と呼び, の競合で発現する磁化状態で, その磁化は面内方向と面直方向の間の方向を向く. コーン磁化にならずとも $K_{\rm u2}$ は $J_{\rm sw}$ 低減に有利であると考えられる. 本研究では, $K_{\rm u2}$ を有する自由層を利用した STT-MRAM 素子の Δ_0 と $J_{\rm sw}$ を解析的に計算し, その効果を調べた.

2 結果および考察

本研究で考慮する STT-MRAM 素子を図 1(a) に図示した. 参照層は垂直磁化で、自由層は垂直磁化かコーン磁化である. 極角 (θ) は z 軸から測った角度である. 正の電流のとき電子 (電気素量を e とする) は自由層から参照層へ流れる.

自由層のエネルギー密度 (ϵ) は次のように書き表される: $\epsilon=K_{\rm ul,eff}\sin^2\theta+K_{\rm u2}\sin^4\theta$. 図 1(b) に磁化状態の $K_{\rm ul,eff},K_{\rm u2}$ 依存性を示している. $K_{\rm ul,eff}<0$ かつ $K_{\rm u2}>-(1/2)K_{\rm ul,eff}$ のときにコーン磁化が安定状態となる. $K_{\rm ul,eff}>0$ のときに垂直磁化が安定状態か準安定状態となる.

 Δ_0 の解析式は ϵ から得られる。図 1(c) の ① の領域すなわち $[K_{\rm ul,eff} < 0$ かつ $K_{\rm u2} > -(1/2)K_{\rm ul,eff}]$ のとき $\Delta_0 = \left(K_{\rm ul,eff} + K_{\rm u2} + \frac{K_{\rm ul,eff}^2}{4K_{\rm u2}}\right) V/(k_{\rm B}T)$,② の領域すなわち $[K_{\rm ul,eff} > 0$ かつ $K_{\rm u2} \geq -(1/2)K_{\rm ul,eff}]$ のとき $\Delta_0 = (K_{\rm ul,eff} + K_{\rm u2}) V/(k_{\rm B}T)$,③ の領域すなわち $[K_{\rm ul,eff} > 0$ かつ $K_{\rm u2} \leq -(1/2)K_{\rm ul,eff}]$ のとき $\Delta_0 = \left[-K_{\rm ul,eff}^2/(4K_{\rm u2})\right] V/(k_{\rm B}T)$ である 3)。解析式から計算した Δ_0 の $K_{\rm ul,eff}$, $K_{\rm u2}$ 依存性を図 1(d) に示す。 $K_{\rm ul,eff}$ と $K_{\rm u2}$ は大きいほど Δ_0 は大きい.

Fig. 1 (a) STT-MRAM 素子の模式図. (b): 磁化状態, (c), (d): Δ_0 , (e), (f): $J_{\rm sw}$ の $K_{\rm ul,eff}$, $K_{\rm u2}$ 依存性. (c) と (e) は解析式の区分を表す.

References

- 1) R. Matsumoto, H. Arai, S. Yuasa, and H. Imamura: Appl. Phys. Express, 8, 063007 (2015).
- 2) R. Matsumoto, H. Arai, S. Yuasa, and H. Imamura: *Phys. Rev. B*, **92**, 140409(R) (2015).
- 3) 本文中の数式における記号の意味は次の通りである: $V \ge d$ は自由層の体積と厚さ, $k_{\rm B}$ はボルツマン定数, T は絶対温度, α はギルバート・ダンピング定数, \hbar はディラック定数, P はスピン分極率.