高次の磁気異方性を有する自由層の磁化反転特性

松本利映 *, 荒井礼子 **,*, 湯浅新治 *, 今村裕志 *

(* 産総研, **JST さきがけ)

Magnetization switching property in a free layer having higher-order magnetic anisotropy R. Matsumoto^{*}, H. Arai^{**,*}, S. Yuasa^{*}, and H. Imamura^{*} (*AIST, **JST-PRESTO)

1 はじめに

CPU の SRAM や DRAM を置き換えるための STT-MRAM を開発するためには、その熱耐性 (Δ_0) を 60 以上に保持しつつスピントランスファー・トルク磁化反転の閾値電流密度 (J_{sw}) を 1 MA/cm² 以下に低減させることが求められる. 最近我々は、等しい熱耐性 Δ_0 (=60) で比較した場合、コーン磁化の自由層 (c-FL) は従来の垂直磁化の自由層より閾値電流密度は 22% 小さく磁化反転時間は 56% 短くなることなど、c-FL の優位性を理論的に明らかにしてきた ^{1,2)}. コーン磁化とは、低次の磁気異方性 (その定数を $K_{u1,eff}$ と呼び、反磁場エネルギーを含めたものとする) と高次の磁気異方性 (その定数を K_{u2} と呼ぶ) の競合で発現する磁化状態で、その磁化は面内方向と面直方向の間の方向を向く. コーン磁化にならずとも K_{u2} は J_{sw} 低減に有利であると考えられる. 本研究では、 K_{u2} を有する自由層を利用した STT-MRAM 素子の Δ_0 と J_{sw} を解析的に計算し、その効果を調べた.

本研究で考慮する STT-MRAM 素子を図 1(a) に図示した.参照 層は垂直磁化で,自由層は垂直磁化かコーン磁化である.極角 (θ) は z 軸から測った角度である.正の電流のとき電子 (電気素量を e と する) は自由層から参照層へ流れる.

自由層のエネルギー密度 (ϵ) は次のように書き表される: $\epsilon = K_{u1,eff} \sin^2 \theta + K_{u2} \sin^4 \theta$. 図 1(b) に磁化状態の $K_{u1,eff}$, K_{u2} 依存性を示している. $K_{u1,eff} < 0$ かつ $K_{u2} > -(1/2)K_{u1,eff}$ のときにコーン磁化が安定状態となる. $K_{u1,eff} > 0$ のときに垂直磁化が安定状態か準安定状態となる.

 Δ_0 の解析式は ϵ から得られる.図 1(c)の①の領域す なわち [$K_{u1,eff}$ < 0 かつ K_{u2} > $-(1/2)K_{u1,eff}$]のとき Δ_0 = $\left(K_{u1,eff} + K_{u2} + \frac{K_{u1,eff}^2}{4K_{u2}}\right)V/(k_BT)$,②の領域すなわち [$K_{u1,eff}$ > 0 か つ $K_{u2} \ge -(1/2)K_{u1,eff}$]のとき Δ_0 = ($K_{u1,eff} + K_{u2}$) $V/(k_BT)$,③ の領域すなわち [$K_{u1,eff}$ > 0 かつ $K_{u2} \le -(1/2)K_{u1,eff}$]のとき Δ_0 = $\left[-K_{u1,eff}^2/(4K_{u2})\right]V/(k_BT)$ である³⁾.解析式から計算した Δ_0 の $K_{u1,eff}, K_{u2}$ 依存性を図 1(d) に示す. $K_{u1,eff}$ と K_{u2} は大きいほど Δ_0 は大きい.

 J_{sw} の解析式はランダウ-リフシッツ-ギルバート方程式から得られる. 図 1(e) の ① の領域すなわち [$K_{u1,eff} > 0$ かつ $K_{u2} \ge (1/4)K_{u1,eff}$] または [$K_{u1,eff} < 0$ かつ $K_{u2} > -(1/2)K_{u1,eff}$] のとき $J_{sw} = \frac{8}{3\sqrt{6}} \frac{\alpha d|e|}{\hbar P} \sqrt{\frac{(K_{u1,eff} + 2K_{u2})^3}{K_{u2}}}$ であり、 $K_{u1,eff}$ と K_{u2} は大きいほど J_{sw} も大きい. 一方で ② の領域すなわち [$K_{u1,eff} > 0$ かつ $K_{u2} \le (1/4)K_{u1,eff}$] のとき $J_{sw} = 4 \frac{\alpha d|e|}{\hbar P} K_{u1,eff}$ であり、 J_{sw} は $K_{u1,eff}$ のみに 比例する. 解析式から計算した J_{sw} の $K_{u1,eff}$ 、 K_{u2} 依存性を図 1(f) に 示す. 図 1(e), (f) から [$K_{u1,eff} > 0$ かつ 0 < $K_{u2} \le (1/4)K_{u1,eff}$] のと きは、 K_{u2} は Δ_0 の上昇に寄与するものの J_{sw} を上昇させないこと がわかる. Δ_0 を保持させつつ J_{sw} を低減させる観点からはこの領 域が最も有利であると考えられる.

2 結果および考察

Fig. 1 (a) STT-MRAM 素子の模式図. (b): 磁化状態, (c), (d): Δ_0 , (e), (f): J_{sw} の $K_{ul,eff}$, K_{u2} 依存性. (c) と (e) は解析 式の区分を表す.

References

- 1) R. Matsumoto, H. Arai, S. Yuasa, and H. Imamura: Appl. Phys. Express, 8, 063007 (2015).
- 2) R. Matsumoto, H. Arai, S. Yuasa, and H. Imamura: Phys. Rev. B, 92, 140409(R) (2015).
- 3) 本文中の数式における記号の意味は次の通りである: $V \ge d$ は自由層の体積と厚さ, $k_{\rm B}$ はボルツマン定数, T は絶対温度, α はギルバート・ダンピング定数, \hbar はディラック定数, P はスピン分極率.