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Overview of Material Research by Information Integration Initiative (MI2I)

K Terakura
(NIMS)
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Reference
1) http://www.nims.go.jp/research/MII-1/index.html  (Accessible on 2016/06/01)
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Data-Science Approach to Magnetic Materials Exploration
T. Oguchi
Institute of Scientific and Industrial Research, Osaka University, Ibaraki 567-0047, Japan
National Institute for Materials Science, Tsukuba 305-0047, Japan

Data-science approaches with rapidly growing data have recently brought a new trend of research and development to a variety
of fields in science and technology. In materials science, it is now widely called ”Materials Informatics (MI)”, as often seen in
several related world-wide projects'™. The key strategy is to integrate data-science techniques with experimental, theoretical, and
computational ones. Especially big data generated by computational simulations together with existing experimental databases are
the target of data-science methods such as data mining and machine learning interleaved with appropriate physical modeling and
descriptors. In M1, first-principles density-functional-theory calculations among the computational approaches play an important role
for supplying data and knowledge on materials complemental to the experimental databases. This is one of the characteristic features
of MI contrast to the preceding “Bioinformatics”. In this talk, I shall introduce some fundamental issues of the data-science approaches

to the exploration of magnetic materials in our research project MI°L.

References

1) Materials Genome Initialtive (MGI): https://www.whitehouse.gov/mgi

2) Materials Design at the Exascale (MAX): http://www.max-center.eu

3) Novel Materials Discovery (NOMAD): http://nomad-coe.eu

4) An e-infrastructure for software, training, and consultancy in simulation and modeling: http://cordis.europa.eu/project/ rcn/198333_en.html
5) Materials Research by Information Integration Initiative (MI2I): http://www.nims.go.jp/eng/research/MII-I/index.html
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Computational exploration of new permanent magnet compounds

Takashi Miyake'
' CD-FMat, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
2CMI® and ESICMM, National Institute for Materials Science, Tsukuba 305-0047, Japan

I will discuss current status and challenges for permanent magnet research by information integration. Strong magnet
compounds such as Nd,Fe 4B, SmyFe ;N3 and NdFe ;N consist of three elements, namely rare-earth, iron and the third
element. A natural question is: What is the best third element, and what about the fourth in a quaternary compound?
This is an issue to be tackled by computational screening. As an example, we will present first-principles calculations of
ThMn,; type iron-based compounds. However, brute-force search based on first-principles calculations is
computationally demanding even if using supercomputer facilities, since the number of combinations of chemical
composition increases rapidly as the number of elements in a compound is increased. Machine learning is a possible
solution to improve the efficiency drastically. It is found that Gaussian process regression using 7 descriptors accurately
reproduces the Curie temperatures of bimetal alloys composed of transition-metal and rare-earth elements. This
technique can be utilized for virtual screening. Another issue is exploration of crystal structure. Saturation
magnetization is expected to be larger as the iron content increases. Hence, the crystal structure of new iron-rich phases
is of particular interest. Crystal structure prediction is a hot topic in computational materials science in the past decade,
and various efficient algorithms have been developed. Recent progress and applications will be reviewed.
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Mining magnetic materials data

DAM Hieu Chi
(Japan Advanced Institute of Science and Technology)

The most important underlying hypothesis of materials researches is that the features of the structure of materials, as
well as its derived physical properties has strong multivariate correlations. The task of materials design is to make these
correlations clear and to determine a strategy to modify the materials to obtain desired properties. However, such
correlations are usually hidden and difficult to uncover or predict by experiments or experience.

For dealing with this issue, data mining methods which can extracting meaningful information and knowledge from
large data sets, are attracted a great deal of interest. Motivated by using data mining to solve data-intensive problems in
materials science, we develop a method to quantitatively model the multivariate correlations between physical
properties of materials and their structures by using sparse modeling. The key idea of our method is to use advanced
statistical mining algorithms, in particular multiple linear regression and non-linear regression regularized least-squares
[1, 2] to solve the sparse approximation problem on the space of structural and physical properties of materials. We use
cross-validation to consistently and quantitatively evaluate the conditional relations of physical properties to all the
structural features of the materials in terms of prediction. We apply the method to a data set of more than four thousand
transition rare-earth metal alloys. We demonstrate that the obtained sparse model is not only significant for the
comprehension of the physics relating to the materials, but also valuable for the guidance of effective material design.

Reference

1) R. Tibshirani, J. R. Statist. Soc. B 58, 267 (1996). B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, Annals of
Statistics 32, 409 (2004).

2) C.E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning, MIT Press (2006).
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Expectation for Materials Informatics in Magnetic Material Research
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Advanced Material Engineering Division, Toyota Motor Corporation, Susono 410-1193, Japan
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Reference
1) https://www.mgi.gov/
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Opportunities and Challenges for Inorganic Material Informatics
from a View Point of Big Data Analytics

Yuzuru Tanaka
tanaka@meme.hokudai.ac.jp
(Graduate School of Information Science and Technology, Hokkaido University)

1. Opportunities for Data-driven Sciences

While “big data” in general is characterized by 3V, i.e., the volume, the velocity and the variety of the target data set
and/or data stream, by 4V, adding the veracity of data, or by 5V, adding the value of the analysis result, “big data” in
applications, especially in cutting-edge science, symbolizes the paradigm shift from mission-driven research to
data-driven research, where the volume may not be the major property of the target data set in the current situation.
Recent development of big data core technologies including analysis algorithms and high performance data
management and analysis platform technologies, together with the development of automatic measurement instruments
and/or large-scale high-performance computer simulation technologies, are currently strongly promoting this paradigm
shift to data-driven research in varieties of domain sciences, which is gradually allowing us to conduct scientific
research studies completely in cyber worlds after having obtained all the required data sets, or through the real-time
receiving of data streams. This trend will further allow us to easily share and exchange not only data sets but also
analysis and visualization tools and services, analysis scenarios, and meta knowledge about them, and will definitely
lead us to what we call open science.

2. Challenges for Data-driven Sciences

Bioinformatics has made the first big success among data-driven sciences to encourage other sciences to follow.
Personalized medicine and material informatics are example followers. However, their researchers are gradually
recognizing the difficulties to fill in the gap between varieties of available data analysis methods and the goals to find
out new meaningful personalized treatments or new functional materials. This gap has two major causes.

In these data-driven sciences, most of the target systems are complex systems of systems in which more than one
subsystem with different mechanisms interact with each other, and each of them is also a heterogeneous system, i.e., a
mixture of more than one subsystem following either different mathematical models or the same model with different
parameter values. In the machine learning of such a system, the learning data set inherently consists of more than one
subset that follow different mathematical models or the same model with different parameter values. It is necessary to
appropriately segment the learning data set into homogeneous subsets before applying the machine learning separately
to each subset. Such segmentation is generally not an easy task. Furthermore, the size of each homogeneous data subset
may often become too small for statistically meaningful analysis. Personalized medicine aims to find out a personalized
treatment that works best for a specific patient, but not necessarily well for the others. The learning data set of patients
is inherently a mixture of different types of patients with different chemo-responses. Each existing large-scale database
of inorganic natural materials is also a mixture of different types of materials consisting of different atoms arranged in
different structures. The total number of the learning data for a certain type of inorganic natural materials for which we
can assume the same physical model for simulation and/or the same regression model for analysis may be in the order
of 10°, or 10" at most, which is definitely small for machine learning, and definitely not sufficient for the deep learning.

Besides the first cause of the gap, i.e., the heterogeneity of the learning data set and the comparatively small size of
each homogeneous data subset, it is often difficult to define sufficient number of appropriate explanatory variables in
providing the learning data set through measurement and/or simulation. In bioinformatics, “genome” constitutes
substantial portion of explanatory variables. In material informatics, we also need its counterpart, i.e., “materials
genome”. For proteins and peptides, a web server called PROFEAT computes structural and physicochemical features
from amino acid sequence to systematically define a sufficient number of explanatory variables. It is a challenge,
especially in inorganic material informatics, to systematically define a sufficient number of appropriate explanatory
variables, i.e., inorganic materials genome.

3. Proposed Action Plan for Inorganic Material Informatics from a Computer Scientist’s View Point
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In order to increase the size of each homogeneous subset of the learning data set, we may focus more attention on
artificial inorganic materials than on natural ones. Examples may include those with amorphous structures and those
with higher-order crystal structures of atom clusters. Such higher-order nanostructures and/or mesoscopic structures
may increase not only the design parameters but also the value space spanned by these design parameter variables. An
amorphous material, for example, may introduce two more design parameters, i.e., the average and the variance of its
crystalline diameters. A super crystal of atom clusters may introduce the design parameters of both each atom cluster
and the super crystal structure. These design parameters may work as explanatory variables of the learning data set,
which may be provided by the simulation based on the first-principle-calculation modeling of the artificial materials and
by databases of related physical properties of the involving atoms and crystal structures. We can compute only a
sufficiently large finite number of simulations to calculate some functional properties of our concern. These functional
properties of the materials may include conductivity, magnetic property, optical property, interfacial activity, catalytic
activity, and bulk modulus. The machine learning for the regression using the simulation result as the learning data set
will estimate the values of such physicochemical properties for arbitrary value combinations of explanatory variables
for which the simulation is still missing.

It is not always possible to mathematically model the total system with all the physicochemical and structural
parameters taken into account as explanatory variables for estimating some functional properties of our concern. The
original idea of machine learning was to give a solution to this problem. Instead of assuming the knowledge about the
underlying mechanism of the total system, it uses the observation records of the relation between a sufficiently large set
of aspects and each functional property of the system as its learning data set to estimate this functional property value
for an arbitrary new value combination of aspects. The success of machine learning heavily depends on the quality and
the quantity of such aspects of the target system. Each aspect defines explanatory variables as parameters of its
mathematical modeling. In the simplest case, an aspect defines a single explanatory variable.

Aspect modeling is different from the total-system modeling. It may use a simple model that may explain the
specified aspect of the system. In naive application of machine learning to materials data, some material properties
become difficult to estimate accurately. Material properties such as lattice constant and magnetic moment can be
accurately estimated from simple descriptors, i.e., explanatory variable, using basic machine learning methods [1].
However, in the experiments, machine learning did not work well to estimate the material bulk modulus (the resistance
to compression of the material). After adding new explanatory variables such as bond type, energy difference in
compression and expansion, and density for the aspect modeling of the material bulk modulus, and calculating, for each
record in the learning data set, the values of these added explanatory variables through the simulation of this aspect
modelling, the bulk modulus could be well estimated.

Some aspect of our concern may be defined as a function of already defined explanatory variables. Depending on the
types of machine learning, such an aspect may require the explicit introduction of a new explanatory variable as a
derived variable, i.e., a function of other variables. In linear-regression machine learning, derived variables defined as
linear combinations of other explanatory variables need not be explicitly introduced as new explanatory variables. They
are implicitly considered by the algorithm if necessary. However, such a derived variable as x/y should be explicitly
introduced as a new explanatory variable. Some indices obtained as analysis results such as cluster ids or pattern ids
may sometime work as new explanatory variables for further segmentation and analysis. We call such explanatory
variables marker variables or, simply, markers.

It should be noticed that the design of appropriate explanatory variables and the process of segmentation and analysis
are both by their nature exploratory processes. This implies the importance of the development of an integrated
exploratory visual analytics platform for data-driven sciences. A further shift toward open science requires not only the
sharing of platform systems, but also a shared repository of data sets, analysis and visualization tools and services,
analysis scenarios, and meta knowledge about them in reusable forms. Meme media and meme pool architectures [2] as
well as their web-based implementation Webble World will answer these requirements.

Reference

1) K. Takahashi and Y. Tanaka, “Material synthesis and design from first principle calculations and machine learning,”
Computational Materials Science, vol. 112, pp. 364-367, 2016.

2) Y. Tanaka, Meme Media and Meme Market Architecture. Piscataway; NJ; USA: IEEE Press, 2003.
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Comments on Materials Informatics from a Researcher in Industry

Takeshi Nishiuchi
Magnetic Materials Research Laboratory, Hitachi Metals, Ltd., Osaka 618-0013, Japan

Over 30 years passed since invention of an Nd-Fe-B magnet, there are strong demands of “new materials” exhibiting
characteristics more excellent than this magnet. To realize this matter, for example, there are many efforts to find out a
new compound with better magnetic properties than Nd,Fey4B.

“Materials Informatics™ is an approach which combines material sciences and data sciences, and has great possibility to
change a way of development of new materials in industry in the future. Several national projects are promoted in Japan,

and magnetic materials, especially permanent magnets, are one of the important targets of them.

In this talk, | will give personal comments on application of “Materials Informatics™ for research and development of
permanent magnets based on my own experiences in industry.
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Satoshi ITOH,/{JjE  Ha
(Japan Science and Technology Promotion/JST)

A new national project concerning the materials informatics (MI) research has been started from July 1%t 2015 in the
NIMS; which called MI?l (Materials research by Information Integration Initiative).  In this project, a new data will
be added to the materials database operated by NIMS, the tools required in the MI research will be developed, and a
data-platform for materials research will be constructed. By using this platform, the effectiveness of the Ml approach
will be demonstrated in the development of magnetic materials including spintronics materials.  Considering that
many practical magnetic materials are multi-component compounds, we have to develop a more advanced searching
system.  Arecent development in Al technology will play an important role in that way.

The MI approach will significantly reduce the time to discover, develop and manufacture new magnetic materials; in
which a key issue is open and easy accessible database of the materials. The materials database contains crystal
structure, composition rate, etc., but it is not enough. That is, in addition to materials data of the ideal state such as a
perfect crystal, information of manufacturing processes in the actual material should be gathered in the materials
database. However, production or manufacturing process usually is concealed as know-how.  In order to promote
the M1 study, a policy regarding the handling of materials data including the know-how has become extremely
important.
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