電動工具用 SR モータの高速回転化に関する検討

熊坂悠也,中村健二,一ノ倉 理 (東北大学)

Consideration of Higher-Speed of SR Motor for Electric Power Tools Y. Kumasaka, K. Nakamura, O. Ichinokura (Tohoku University)

はじめに

先に筆者らは、スイッチトリラクタンス(SR)モ ータの電動工具への応用を目的として、現状の電動工 具に使用されている永久磁石(PM)モータと同体格 のSRモータを設計・試作し、ほぼ同等の性能が得ら れることを明らかにした¹⁾。本稿では、SRモータの 特長を生かし、現状のPMモータよりもさらに高速回 転化したSRモータの特性について、有限要素法(FEM) を用いて検討を行ったので報告する。

高速回転 SR モータの諸元と解析結果

Fig. 1 に,検討に用いた SR モータの諸元を示す。 この SR モータは,実際の電動工具に用いられている PM モータと同体格,同ギャップ長である。以下の検 討では,SR モータの回転速度を PM モータの約 2.1 倍とした。したがって,現状の PM モータに用いられ ている機械式の減速ギヤのギヤ比が 9 であるのに対 して,SR モータのギヤ比は 20 とした。また,SR モ ータの回転数が 2 倍以上になり,鉄損の増大が想定さ れるため,鉄心材料は 6.5%SiFe とした。

Fig. 2 に、ギヤ比で換算したトルク対速度特性を示 す。この図を見るとほぼ同等の特性が得られているこ とがわかる。Fig. 3 は、巻線電流密度に対する換算ト ルクの比較である。同体格、同ギャップ長の SR モー タであっても、高速回転化することで、減速後のトル クは PM モータを上回ることがわかる。Fig. 4 に、銅 損と鉄損の計算値を示す。高速回転化したことで鉄損 の増加が懸念されたが、低損失材料である 6.5% SiFe を採用したことで、PM モータよりも鉄損が低く抑え られたことがわかる。

Gap length :	0.5 mm
Axial length:	10.15 mm
Core material :	6.5%SiFe
Exciting voltage :	20V
Winding space factor :	24.00%

Fig. 1 Specifications of a high speed SR motor.

Fig. 2 Comparison of torque versus speed characteristic.

Fig. 3 Comparison of winding current density versus torque characteristic.

Fig. 4 Comparison of torque versus copper loss, iron loss characteristics.

参考文献

1) K. Nakamura, Y. Kumasaka, K. Isobe, O. Ichinokura, The papers of Technical Meeting on Rotating Machinery, IEEJ, RM-15-146 (2015).

波力発電用リニア発電機の制御に関する検討

紙屋 大輝,後藤 博樹,一ノ倉 理

(東北大学)

A Study of Control of Linear Generator for Wave Power Generation

D. Kamiya, H.Goto, O. Ichinokura

(Tohoku University)

はじめに

近年,再生可能エネルギーへの注目が高まる中,周 囲を海で囲まれている日本においては,波力発電は 次世代エネルギーとして特に重要といえる。しかし, 波力発電設備は海中に設置されることから高い保守 性が必要であることや他の発電方式に比べ設備が大 型化し,発電コストが高いことから,いまだ商用化 には至っていない。波力発電にはいくつかの方式が あるが,筆者らはリニア発電機を用いたポイント・ アブソーバ式波力発電装置に着目した。本方式は機 械的な変換機が不要であることから,機械損失を減 少でき,保守性にも優れるが,実用化にはさらなる 高出力密度化が求められる。本稿では,制御手法に 注目し,実際に制御装置を試作して模擬実験を行う ことで検討を行った。

検討した発電制御方式

本方式における概要図を Fig.1 に示す。発電機制御 の手法として、波と発電機の運動を共振させること で機械的振動を大きくする共振制御が提案されてき たが、機械共振による大きな運動や、大電流が流れ ることによる発電機損失の増加などの欠点が明らか になった。そこで、これらの欠点を解決するため、 電気工学におけるインピーダンスマッチングの発想 に基づく ACL 制御(Approximate Complex-conjugate control considering generator copper Losses)が提案さ れた¹⁾。この制御法は、共振制御では考慮していな かった発電機損失を考慮し、電気出力を最大化する 意図に基づいて系を共振状態から遠ざける。

これら2つの制御方式について Fig.2 に示す実験 装置を用いて、模擬実験を行った。Fig.3(a)に入力波 周期 0.57s 時の変位波形を示す。共振制御時の変位 振幅が ACL 制御時よりも大きくなっていることが わかる。これは、共振制御時は波と発電機が機械共 振状態となっているためと考えられる。Fig.3(b)に発 電電力波形を示す。それぞれの平均出力は共振制御 が-1.2W, ACL 制御が 8.9W となった。振幅自体は共 振制御が大きいものの,負の方向への振幅が大きく、 その平均値は負となっていることがわかる。これは、 浮体と入力波を共振させるために必要な発電機推力 が大きく、銅損が過大となったためと考えられる。 ACL 制御時の発電電力波形は若干負の値になるタ イミングがあるものの、その大きさは共振制御ほど 大きくなく、平均発電電力は共振制御時より大きく なっていることが了解される。

なお,本成果は,国立研究開発法人新エネルギー・ 産業技術総合開発機構(NEDO)の委託業務の結 果得られたものである。

Fig. 1 Overview figure of wave generation

<u>参考文献</u>

 Villa Jaén, Antonio, Agustín García-Santana, and Dan El Montoya-Andrade: International Transactions on Electrical Energy Systems, Vol.24, No.6, pp.875-890 (2014)

磁性鉄粉まで考慮した圧粉磁心の電磁界解析に関する検討

増井出、中村健二、一ノ倉理(東北大学)

Electromagnetic Field Analysis for Soft Magnetic Composite considering Magnetic Particles Izuru Masui, Kenji Nakamura, Osamu Ichinokura

(Tohoku University)

1. はじめに

圧粉磁心は磁性鉄粉に絶縁被膜を施し、圧縮成 型した磁性体であり、コア形状の自由度が高く、 高周波鉄損が小さいなどの特長を有する。圧粉磁 心の高性能化には、飽和磁束密度を高めながら、 鉄損を低減することが必須であり、そのためには、 磁性鉄粉の粒子径を小さく、かつ絶縁被膜の厚さ を極力薄くするとともに、高い圧力で圧縮成型す ることで、鉄粉の充填率を上げることが必要不可 欠である。しかしながら、極端に絶縁被膜を薄く すると、被膜不良によって磁性鉄粉同士が直接接 触する、あるいは被膜に導電性の不純物が入り込 む等によって、磁性鉄粉間に渦電流が流れるなど の問題が生じる。

そこで本稿では,磁性鉄粉のサイズや絶縁被膜 の厚さ,抵抗率などを勘案した圧粉磁心の最適設 計法の確立を目的として,圧粉磁心内の磁性鉄粉 まで考慮した電磁界解析について検討を行ったの で報告する。

2. 磁性鉄粉を考慮した電磁界解析

有限要素法(FEM)を用いて、圧粉磁心内の磁 性鉄粉に流れる渦電流を解析するためには、非常 に微細な磁性鉄粉を要素分割する必要がある。本 稿では、Fig. 1 に示すように、磁性鉄粉 1 つの大 きさを一辺 140 μm の立方体と仮定し、これを縦 6 個、横 6 個に等間隔に並べたモデルについて、渦 電流の解析を行った。Fig. 2 に 3 次元 FEM モデル を示す。電磁界分布の対称性から 1/4 モデルを用 いて、渦電流損失の解析を行った。なお、磁性鉄 粉間の絶縁被膜の厚さは 0.7 μm とし、被膜の抵抗 率は Fig. 3 のリングコア試料を四端子法で測定し た抵抗値から 23.2 mΩ·m と試算した。

Fig. 4 に,単位体積当たりの渦電流損失の計算 値と実測値を示す。この図を見ると,被膜の実効 的な抵抗率を考慮することによって,精度の高い 損失算定ができることが了解される。

Fig. 1 Analysis model of SMC including magnetic particle.

Fig. 2 3-D FEM model.

Fig. 3 Specifications of a ring core of SMC.

RNAによる100 kVA級重ね巻型3相一体可変インダクタの設計試作

中村健二,山田雄太,大日向 敬*,有松健司*, 山田 真**,瀧口雅也**,小島武彦**,一ノ倉 理 (東北大学,*東北電力,**富士電機)

Design and Prototyping of 100 kVA Concentric-Winding type Three-Phase Variable Inductor

based on Reluctance Network Analysis

K. Nakamura, Y. Yamada, T. Ohinata*, K. Arimatsu*,

M. Yamada**, M. Takiguchi**, T. Kojima**, O. Ichinokura

(Tohoku University, *Tohoku Electric Power Co., Inc., **Fuji Electric Co., Inc.)

はじめに

先に筆者らは,直流制御巻線と交流主巻線を重ね て磁脚に施した重ね巻型3相一体可変インダクタを 提案し,良好な特性を有することを明らかにした¹⁾。 本稿では,リラクタンスネットワーク解析(RNA) に基づき,6.6 kV - 100 kVA 級の実証器の解析設計と 試作試験を行ったので報告する。

RNA による 100kVA 器の解析設計・試作試験

Fig. 1 に、重ね巻型3相一体可変インダクタの基本構成を示す。RNAモデルの導出に際しては、まず解析対象である磁心を、Fig. 2 に示すように複数の要素に分割し、各分割要素を3次元の単位磁気回路で表す。ここで、図中の磁気抵抗は分割要素の寸法と材料の B-H曲線から求めることができる。

Fig. 3 に, RNA を用いて設計した 100 kVA 級の実 証器の諸元を示す。Fig. 4 に無効電力制御特性の比 較を示す。この図を見ると,実証器は線形かつ連続 的に無効電力を制御可能であり,設計通りの制御量 が得られていることがわかる。Fig. 5 は,定格換算 した出力電流の歪み率である。なお,実証実験では 電源電圧の歪み等に由来する第3 調波成分が含まれ ていたことから,これを除いた結果についても併せ て同図中に示す。この図を見ると,実証器の歪み率 は全制御範囲で 5%以下の目標を達成できたことが わかる。また,このような高圧大容量器についても, RNA により十分な精度で設計可能であることが明 らかになった。なお,本研究はJST研究成果展開事 業 A-STEP の支援を受け行った。

参考文献

1) K. Nakamura, et al., IEEE Trans. Magn., 51 8402104 (2015)

Fig. 1 Basic configuration of a concentric-winding type three-phase variable inductor.

Fig. 2 RNA model of the concentric-winding type three-phase variable inductor.

Fig. 3 Specifications of 6.6 kV - 100 kVA concentric-winding type three-phase variable inductor.

RNA によるフェライト磁石モータの減磁解析に関する考察

吉田征弘,門間大樹,田島克文 (秋田大学)

A Consideration of Demagnetizing Analysis of Ferrite Magnet Motor Based on RNA Y.Yoshida, D.Momma, K.Tajima

(Akita Univ.)

はじめに

フェライト磁石は外部磁界によって減磁しやすい ため、フェライト磁石モータの設計には減磁を考慮 した解析が必要になる.筆者らは、リラクタンスネ ットワーク解析(RNA)を用いた永久磁石モータの 損失算定について検討を進めているが¹⁾、外部磁界 による減磁を考慮したモータの解析手法は未だ確立 されていない.そこで本稿では、RNA 用いた表面磁 石形(SPM)フェライト磁石モータの減磁解析手法 を示し、有限要素解析(FEA)による算定結果と比 較を行うことで、その妥当性について検討を行った ので報告する.

RNA によるフェライト磁石モータの減磁解析

Fig.1 に検討に用いた SPM モータの形状と諸元を 示す. 永久磁石にはフェライト磁石を用い, 巻線は 分布巻で,磁極ピッチが 6, コイルピッチが 5 の短 節巻であり, 1 スロットあたり 100 ターン施されて いる.

Fig.2 に SPM モータの RNA モデルの一部を示す. エアギャップから回転子にかけては磁束分布が複雑 になるため,周方向に1度ずつ等間隔で分割する. また,磁石の減磁には分布が生じるため,磁石は径 方向に3分割している.外部磁界によって磁石の磁 束密度がクニック点を下回ると,RNA モデルにおけ る磁石の起磁力を減磁率に応じて低下させることで 減磁したときのモータ特性を計算する.

導出した RNA モデルを用いて,定格電流である 4.0A に対して 9.5 A の電流を流して磁石を減磁させ たときと,減磁していない状態で定格電流を流した ときのトルクを計算し,FEA のトルク波形計算結果 と比較した.Fig.3 (a) に減磁前のトルク波形を,同 図 (b) に減磁後のトルク波形を示す.これらの図を みると,RNA で計算した減磁前後のトルク波形は FEA の計算結果と概ね一致しているのがわかる.平 均トルクは減磁前が 1.30 N·m で,減磁すると 1.22 N·m に低下しており,FEA の計算結果との差は 2 % 以内であった.

Number of slots	24
Number of poles	4
Number of widing turns/slot	100
Stack length	30 mm
Core materials	Relative permeability $\mu_s = 3000$
Permanent magnet materials	Ferrite (SSR-420)

Fig.3 Comparison of torque waveform between before and after demagnetization.

参考文献

 Y. Yoshida, K. Nakamura, O. Ichinokura, Katsubumi Tajima, IEEJ Journal of Industry Applications, Vol. 3, No. 6, pp.422-427 (2014)

RNA に基づく DC-DC コンバータ用トランス巻線の 渦電流損推定に関する考察

樋渡拓也,田島克文,吉田征弘

(秋田大学)

Consideration of estimation for eddy current loss of transformer windings in the DC-DC converter based on RNA T.Hiwatashi, K.Tajima, Y.Yoshida (Akita Univ.)

<u>はじめに</u>

筆者らは、DC-DC コンバータにおけるトランス巻 線の漏れ磁束によって生じる渦電流損の推定につい て検討を進めている¹⁾。本稿では、RNA (Reluctance Network Analysis)を用いた角柱銅線に生じる渦電流 損の推定手法を示し、三次元有限要素解析 (3D-FEA)による解析結果と比較を行うことで、その 有用性について検討を行ったので報告する。

<u>提案する RNA モデル</u>

Fig.1(a)に解析対象の形状と寸法を示す。断面が 30mm × 20mm の C 型のフェライトコアに,巻線に 見立てた 2.0mm × 2.0mm × 20mm の角柱銅線が合計 6 本挟まれており,コアには各 10 ターンのコイルが 施されている。同図(b)には同図(a)の赤枠線で示すコ アギャップ間の RNA における要素分割を示す。角 柱銅線は高周波時の表皮効果を考慮するため, x 方 向に 10 分割, y 方向に 8 分割している。

Fig.2 に提案モデルの概略図を示す。図中の R_{mcore}, R_{mgap}, R_{mcopper}はそれぞれコア,ギャップ,角柱銅線 の磁気抵抗を表しており, R_{mLcoil}, R_{mLgap}はそれぞれ 励磁コイル,ギャップの漏れ磁気抵抗を表している。 角柱銅線で生じる渦電流は鎖交磁束を考慮して赤線 で示す電気回路で計算し,磁気回路中において逆向 きの起磁力として与えた。

正弦波電流 4 A_{rms} で励磁した時の角柱銅線におけ る周波数-渦電流損特性の解析結果を Fig.3 に示す。 RNA および 3D-FEA それぞれにおいて 3 周期計算を 行った。同図から分かるように両者は良好に一致し ており,表皮効果が現れる周波数帯域においても RNA では巻線の渦電流損がおおよそ推定できる可 能性があることが示された。

Fig.1 Shape and division of analytical model.

Fig.2 Schematics of proposed model.

参考文献

1) 樋渡,田島,吉田, 電学研資 MAG-16-035(2016)

表面酸化鉄系メタルコンポジット磁心トランスの試作と

フライバックコンバータへの応用

佐藤紘介***, 杉村佳奈子**, 佐藤敏郎**, 曽根原誠** (*長野県工業技術総合センター, **信州大)

Fabrication of surface-oxidized Fe-based metal composite transformer

and its application to the flyback-type dc-dc converter

K. Sato*'**, K. Sugimura**, T. Sato**, M. Sonehara**

(*Nagano Prefecture General Industrial Technology Center, **Shinshu univ.)

<u>はじめに</u>

近年、SiC/GaN パワーデバイスの開発が盛んに行われており、低損失かつ MHz 高周波スイッチング動作が 可能であるという特長から、DC-DC コンバータのさらなる小型化・高効率化が期待されている.筆者らは、 MHz 動作 DC-DC コンバータへ適用するため、表面酸化処理を施した 1.6µm 径のカルボニル鉄粉とエポキシ 樹脂からなる複合材料(以下、表面酸化 CIP/Epoxy)を用いてインダクタを試作し、GaN-HEMT モジュールを用 いた 18V 入力、5V・2A 出力を電源定格とした 1MHz 動作 Buck コンバータへ適用することで、最大約 95% の電力変換効率が得られることを報告した¹⁾.

本稿では、表面酸化 CIP/Epoxy 磁心トランスを試作し、AC アダプタ等に多用されている方式であるフライ バックコンバータへ適用した結果について報告する.

<u>実験方法</u>

トランスの巻線には、70µm 厚、5mm 幅の銅張ポリイミドフィルムを用い、1 次巻線と2 次巻線の配置の異なる2種類を試作した.比透磁率の低い表面酸化 CIP/Epoxy 磁心でも励磁インダクタンスを高めるため、Fig.1 に示すように巻線をコア中に埋め込む構造とした. Fig.2 に評価に用いたフライバックコンバータの回路図を示す.48V入力、12V・5A 出力を電源定格とし、スイッチング周波数は400kHz とした.比較のためインダクタンスおよび結合係数の値を概ね一致させた Mn-Zn フェライトを用いたトランスについても評価を行った.

<u>実験結果</u>

Fig.3 に電力変換効率を示す. 効率は 1.2A~1.3A 出力時に最大となり約 89%が得られている. 軽負荷時は 結合係数の低い巻線 A のトランスの方が効率は高い. これは, こちらの方が等価直列抵抗が低いためである と考えられる. 一方, 重負荷時においては, 漏れインダクタンスに蓄積され 2 次側に伝達されないエネルギ 一の影響が大きくなるため, 結合係数が良い巻線 B のトランスの方が高効率になることがわかる.

参考文献

1) 上野,他;平成28年電気学会全国大会,2-097, p.118(2016).

-34-