Characteristic temperature dependence of spin－dependent tunneling conductance of MTJs with highly spin－polarized electrodes

Bing Hu，Kidist Moges，Yusuke Honda，Tetsuya Uemura，and Masafumi Yamamoto Hokkaido University

Half－metallic ferromagnets are one of the most suitable spin－source materials for spintronic devices because of their complete spin polarization at the Fermi level（ E_{F} ）．We recently demonstrated that controlling defects through the film composition is critical to retaining the half－metallicity of ternary Heusler alloy $\mathrm{Co}_{2} \mathrm{MnSi}$（CMS）and quaternary alloy $\mathrm{Co}_{2}(\mathrm{Mn}, \mathrm{Fe}) \mathrm{Si}$（CMFS）［1－3］．As a result，we demonstrated giant TMR ratios for $\mathrm{CMS} / \mathrm{MgO} / \mathrm{CMS}$ magnetic tunnel jucntions（CMS MTJs）and CMFS／MgO／CMFS MTJs（CMFS MTJs）of up to 2610% at 4.2 K and 429% at $290 \mathrm{~K}[1,3]$ ． The purpose of the present study was to clarify the key mechanisms that determine the temperature (T) dependence of the spin－dependent tunneling conductances $G(=I / V)$ for the parallel（P）and antiparallel（AP），G_{P} and G_{AP} ，in particular， G_{P} of MTJs with highly spin－polarized electrodes．To do this，we experimentally investigated how the T dependence of G_{P} and G_{AP} varied with the degree of the half－metallicity of CMS and CMFS electrodes．

The preparation of fully epitaxial CMS MTJs（CMFS MTJs）with various values of α（ α^{\prime} and β^{\prime} ）in $\mathrm{Co}_{2} \mathrm{Mn}_{\alpha} \mathrm{Si}$ $\left(\mathrm{Co}_{2}\left(\mathrm{Mn}_{\alpha} \mathrm{Fe}_{\beta}\right) \mathrm{Si}\right)$ electrodes has been described elsewhere［1，3］．The tunneling conductances G_{P} and G_{AP} were measured by a dc four－probe method at temperatures from 4.2 K to 290 K at a bias voltage of 2 mV ．

Figure 1 shows the T dependence of G_{P} of three kinds of epitaxial MgO－based MTJs：a CMS MTJ and a CMFS MTJ both showing high TMR ratios and an identically prepared $\mathrm{Co}_{50} \mathrm{Fe}_{50}(\mathrm{CoFe}) / \mathrm{MgO} / \mathrm{CoFe}$ MTJ（ CoFe MTJ）showing a relatively low TMR．Contrasting dependences were observed：G_{P} of the CoFe MTJ increased with increasing T ，in particular，for $T>100 \mathrm{~K}$ ，while G_{P} of the CMS MTJ and CMFS MTJ decreased with increasing T from $T_{1}(\sim 25 \mathrm{~K})$ to T_{2} $(\sim 220 \mathrm{~K})$ and then increased for $T>T_{2}$ ．This result suggests the correlation between the T dependence of G_{P} and the spin polarization at E_{F} ．

The possible origin of the contrasting behaviors of the T dependence of G_{P} of MTJs featuring a wide range of the TMR ratio at 4.2 K can be explained by the competition between two factors involved in the tunneling mechanisms： One is a spin－flip tunneling process via a thermally excited magnon（Zhang＇s term）［4］，which increases G_{P} with increasing T ，and another is a spin－conserved tunneling process but under the decrease in the tunneling spin polarization， which decreases G_{P} with increasing T due to a spin－wave excitation（Shang＇s term）［5］．Note that the contribution to G_{P} from the Zhang＇s term decreased with increasing spin polarization．Thus，it is reasonable to ascribe the increase in G_{P} for MTJs showing lower TMR ratios to the Zhang＇s term and ascribe the decrease in G_{P} for a T range from $T_{1}<T<T_{2}$ for MTJs showing higher TMR ratios to the Shang＇s model because of the relative decrease in the contribution from the Zhang＇s term．Given these consideration，we fitted the T dependence of G_{P} of MTJs showing high TMR ratios by taking into account both two factors：Shang＇s term responsible for the decrease in G_{P} for $T_{1}<T<T_{2}$ while the Zhang＇s term responsible for the increase in G_{P} for $T>T_{2}$（Fig．2）．We confirmed that the thus fitted curve well reproduced the $G_{\mathrm{P}}(T)$ for a CMS MTJ showing a giant TMR ratio．
［1］H．－x．Liu et al．，Appl．Phys．Lett．101， 132418 （2012）．［2］G．－f．Li et al．，PRB 89， 014428 （2014）．［3］H．－x．Liu et al．，J．Phys．D： Appl．Phys．48， 164001 （2015）．［4］S．Zhang et al．，PRL 79， 19 （1997）．［5］C．H．Shang et al．，PRB 58，2917（R）（1988）．

Fig 1．Typical T dependence of the normalized tunneling conductance for P of three kinds of MgO －based MTJs having a wide range of TMR ratio at 4.2 K and 290 K ．

Fig 2．Experimental（open circles）and fitted（line）curve for a $\mathrm{Co}_{2} \mathrm{Mn}_{1.30} \mathrm{Si}_{0.84} \mathrm{MTJ}$ showing giant TMR ratios of 2011% at 4.2 K and 329% at 290 K ．

