Accurate measurement of hysteresis curve for Nd-Fe-B sintered magnet with superconducting magnet-based vibrating sample magnetometer

H. Nishio*, **, K. Machida**, and K. Ozaki***

(*Research Institute for Measurement of Magnetic Materials, **Division of Applied Chemistry, Osaka Univ., ***National Institute of Advanced Industrial Science & Technology)

Introduction

In recent years, there has been growing interest in the developments of a new measuring system for the hysteresis curve of large voluminal rare-earth magnets. There still remain some problems such as decrease in the maximum field (H_m) , the magnetization distortion, and the drift in the hysteresis graph (HG) method, and the eddy current effect in the pulsed-field magnetometer (PF) method [1-3]. Therefore, we made the most use of a superconducting magnet (SCM)-based vibrating sample magnetometer (VSM). We compared the SCM-VSM method with the HG and PF methods to obtain accurate magnetic properties of Nd-Fe-B sintered magnets with very high coercivity $(H_{cJ}) (\geq 2.1 \text{ MA/m})$.

Experiment

The sample was magnetized with an $H_{\rm m}$ of 5.6 MA/m. The inner diameter of SCM used for NbTi wire is 50 mm. The time for the measurement of a hysteresis curve was approximately 2.5 h. The applied field ($H_{\rm ex}$) uniformity within 0.1% was 14 mm diameter sphere volume in the center of SCM. Magnetization (*J*) was calibrated at 1.0 MA/m by using the saturation magnetization of a Ni (99.9%) whose size was the same as that of sample. $H_{\rm ex}$ was calibrated by the nuclear magnetic resonance. The accuracy was better than ±1% after calibration for both *J* and $H_{\rm ex}$. Particular attention was paid to accurate correction of demagnetizing field ($H_{\rm d}$) for the cylindrical sample with diameter (*D*) of 10 mm and length (*L*) of 14 mm using a magneto-metric demagnetizing factor ($N_{\rm m}$) depended on the differential susceptibility (dJ/dH_{ex}) [3, 4].

Results and Discussion

It was essential that the longer L of the sample be magnetized uniformly for these methods [3]. Fig. 1 shows the hysteresis and dJ/dHeff curves of Nd-Fe-B sintered magnet with L-to-D ratio (L/D) of 1.4 for the SCM-VSM method, where $H_{\rm eff}$ is the effective field. These curves were corrected for the H_d . The definition of $N_{\rm m}$ was generally limited to $dJ/dH_{\rm ex} \approx 0$. However, $N_{\rm m}$ was considered to be the functions of L/D and dJ/dH_{ex} [4]. The values of dJ/dH_{ex} in the hysteresis curves were 0.01-5.40 Tm/MA (= 10^{-6} H/m) in the study. $N_{\rm m}$ of the cylindrical sample with L/D = 1.4 for the SCM-VSM method is obtained by $0.240 - 0.037\log(1 + dJ/dH_{ex})$ on the condition of $0 \le dJ/dH_{ex} \le 10$ [4]. Table 1 shows the magnetic properties obtained from these methods for Nd-Fe-B sintered magnet. The squareness (H_k/H_{cl}) obtained from PF method was much smaller than that of SCM-VSM method. It was suitable for the measurement of hysteresis curve for large voluminal rare-earth magnet. Acknowledgement This is based on results obtained from the future pioneering program "Development of magnetic material technology for high-efficiency motors" commissioned by the New Energy and Industrial Technology Development Organization (NEDO). The authors thank Mr. K. Tamakawa and Mr. N. Sasaki of Tamakawa Co., Ltd., for providing a SCM-VSM system.

Fig. 1 J-H_{eff} and dJ/dH_{eff} curves of Nd-Fe-B sintered magnet.

References

L. Ludwig et al., *IEEE Trans. Magn.*, **38**, 211. 2002.
 C. H. Chen et al., *J. Magn. Magn. Mater.*, **320**, L84, 2008.
 H. Nishio, *IEEE Trans. Magn.*, **48**, 4779. 2012.
 D. X. Chen et al., *IEEE Trans. Magn.*, **27**, 3601, 1991.

Table 1 Magnetic properties of Nd-Fe-B sintered magnet (D = 10 mm, L = 14 mm) measured by PF, HG, and SCM-VSM methods.

Method	Correction	$J_{\rm m}$ / $B_{\rm r}$ (T)	$H_{\rm cB}$ (MA/m)	H_{cJ} (MA/m)	$H_{ m k}$ / $H_{ m cJ}$	$(BH)_{\rm max}~({\rm kJ/m^3})$	dJ/dH_{eff} near H_{cJ} (Tm/MA)
PF	Ref. [3]	1.22 / 1.15	0.89	2.10	0.919	256	17
HG	Ref. [3]	1.21 / 1.18	0.90	2.03	0.941	268	12
SCM-VSM	Eq. of $N_{\rm m}$	1.22 / 1.16	0.90	2.13	0.963	263	38