二次元近藤格子のメスバウア分光

井田和則, 岡野智宏, 中村哲朗, 若月厚志, 北尾真司*, 瀬戸誠*, 的場正憲, 神原陽一 (慶大, *京大)

Mössbauer Spectroscopy of Two Dimensional Kondo Lattice

K. Ida, T. Okano, T. Nakamura, A. Wakatsuki, S. Kitao*, M. Seto*, M. Matoba, and Y. Kamihara

(Keio Univ., *Kyoto Univ)

<u>1. はじめに</u>

Ce 化合物に代表される近藤格子系においては伝導電子と局在電子の2種類の性質の異なる電子が存在する. これらの電子間では非磁性基底状態をもたらす近藤効果と,磁気秩序を安定化させる RKKY 相互作用が競合 し,その結果化合物の磁性が決定される.Ce 化合物の近藤格子系においては基底状態で反強磁性を示す物質 が多く,強磁性を示す物質は少ない.我々は希少な二次元近藤格子系の強磁性体 CeRuPO[1]および常磁性体 CeFePO の固溶体 Ce(Ru_{1-x}Fe_x)PO[2]に着目した.この物質群において Ce は磁気モーメントを持ち、Fe は持た ないと考えられてきた.本研究では Fe 原子の超微細構造の測定を行い,Fe 原子中の電子・磁気状態を明らか にしたことを報告する.

<u>2. 実験方法</u>

本報告における多結晶試料は2段階に分けた固相反応により合成した.1次熱処理は化学量論比でCe:Fe:P (以後Ce-2Fe-2P)=Ce:Ru:P(以後Ce-2Ru-2P)=1:2:2に混合した後,石英管に真空封入して熱処理を行 った.2次熱処理は1次熱処理の物質および脱水したCeO₂を用いて,化学量論比でCe-2Fe-2P:Ce-2Ru-2P: CeO₂=1-x:x:1に混合した.その後,ペレット状に成型し,石英管に減圧二重封入して熱処理を行った.試

料合成後,⁵⁷Co線源を利用した⁵⁷Fe メスバウア分光測定をコンベンショナルな透過法[3]により行った.この際,ゼロ磁場下での測定は冷凍機型のクライオスタットを用いて 4.2 - 300 K の領域で行った.また,*x*=0.80,0.87,0.95の試料に関しては超伝導マグネット型クライオスタットを用いて,最大14 T までの磁場下での測定を2 K および100 K の温度下で行った.この際,常磁性体の標準試料として K₄[Fe(CN)₆]を用いた.

3. 実験結果·考察

強磁性-常磁性の磁気量子臨界点付近である Ce(Ru_{1-x}Fe_x)PO (x = 0.87) の2Kにおけるメスバウア分光測定結果を Fig.1に、および精密化した アイソマーシフト(IS)、内部磁場(MF_{in})、四重極分裂(QS)、線幅(LW)を Table 1 に示す. ゼロ磁場下では磁気分裂が出現せず、母相 CeFePO の結 果を支持するものであった[4]. 磁場を印加した際にゼーマン分裂に起 因するスペクトルの分裂を確認した. この際、電子密度の目安となる IS はほぼ一定であった. 一方、磁場の増加に伴い、QS が減少傾向を示した. これは、鉄核子の位置における電場勾配が減少しており、FeP 層の四面 体構造が正四面体型に近づいていることを示す.

加えて, 試料中の MF_{in} の値が外部磁場(MF_{ex})に比 べて 0.2 T 程度の増加を示した.これにより巨視的 には磁性を持たない Fe が微視的には低温かつ磁場 下で 0.012 μ_{B} / Fe 程度の自発磁化を示す.

参考文献

- [1] E. M. Bruning, et al., Phys. Rev. Lett. 101, 117206 (2008).
- [2] S. Kitagawa, et al., Phys. Lev. Let. 109, 033704 (2012).
- [3] R. L. Mössbauer, Z. Physik, **151**, 124 (1958).
- [4] T. Nakamura, et al., J. Phys. Soc. Jpn.81, 064712 (2012).

Fig. 1 Observed $^{57}\mbox{Fe}$ Mössbauer spectra of Ce(Ru_{0.87}\mbox{Fe}_{0.13})\mbox{PO} under magnetic fields at 2 K.

Table	1	Refined	parameters	of	$^{57}\mathrm{Fe}$	Mössbauer	spectroscopy
measu	rer	nents un	der magnetic	fiel	ds for	Ce(Ru _{0.87} Fe	_{0.13})PO at 2 K.

$MF_{ex}(T)$	IS(mm s ⁻¹)	$MF_{in}(T)$	QS (mm s ⁻¹)	LW (mm s ⁻¹)
0	0.450(3)	0.00(0)	0.285(3)	0.276(5)
2	0.449(3)	2.15(1)	0.031(5)	0.345(7)
3	0.447(4)	3.17(1)	0.033(6)	0.346(6)
5	0.447(4)	5.16(1)	0.036(7)	0.326(6)
7	0.450(4)	7.16(1)	0.030(7)	0.338(6)
14	0.448(3)	14.18(1)	0.033(5)	0.302(5)